chứng minh rằng :
a) \(\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)=\dfrac{x+1}{2x}\)
b)\(\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\left(\dfrac{x+1}{3x}-x-1\right)\right]:\dfrac{x+1}{x}=\dfrac{2x}{x-1}\)
c)\(\left[\dfrac{2}{\left(x+1\right)^3}\left(\dfrac{1}{x}+1\right)+\dfrac{1}{x^2+2x+1}\left(\dfrac{1}{x^2}+1\right)\right]:\dfrac{x-1}{x^3}=\dfrac{x}{x-1}\)
Tính
a)\(\left(\dfrac{\left(x-1\right)^2}{\left(3x+x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right):\dfrac{x^2+x}{x^2+1}\)
b)\(\left(\dfrac{3\left(x+2\right)}{2\left(x^3+x^2+x+1\right)}+\dfrac{2x^2-x+10}{2\left(x^3+x^2+x+1\right)}\right):\left(\dfrac{5}{x^2+1}+\dfrac{3}{2\left(x+1\right)}-\dfrac{3}{2\left(x-1\right)}\right).\dfrac{2}{x-1}\)
c)\(\left(\dfrac{x^2}{x^2-5x+6}+\dfrac{x^2}{x^2-3x+2}\right):\dfrac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
B1: Tính:
\(B=\dfrac{4.\left(x+3\right)^2}{\left(3x+5\right)^2-4x^2}-\dfrac{x^2-25}{9x^2-\left(2x+5\right)^2}-\dfrac{\left(2x+3\right)^2-x^2}{\left(4x+15\right)^2-x^2}\)
B2: Xác định a, b, c:
a, \(\dfrac{10x-4}{x^3-4x}=\dfrac{a}{x}+\dfrac{b}{1-2}+\dfrac{c}{n+2}\) với mọi x khác 0, x khác \(\pm2\)
b, \(\dfrac{1}{x^3-1}=\dfrac{a}{x-1}+\dfrac{bx+c}{x^2+x+1}\)
Help me!!!
giải phương trình
a.\(\left(2x-3\right)^2=\left(2x-3\right)\left(x+1\right)\)
b.\(x\left(2x-9\right)=3x\left(x-5\right)\)
c.\(3x-15=2x\left(x-5\right)\)
d.\(\dfrac{5-x}{2}=\dfrac{3x-4}{6}\)
e.\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
Cho \(M=\left[\dfrac{\left(x-1\right)^2}{3x+\left(x+1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right]:\dfrac{2x}{x^3+x}\)
a, Rút gọn biểu thức M
b, Tìm giá trị của x để M đạt GTNN
a) \(\dfrac{4x}{x^2+2x}\)+\(\dfrac{8}{x^2+2x}\)
b) \(\dfrac{2x-3x}{x-2}\)-\(\dfrac{2x-4}{x-2}\)
c) \(\dfrac{2x-1}{x+3}\)-\(\dfrac{3x+2}{x+3}\)
d) \(\dfrac{11x}{2x-3}\)-\(\dfrac{18-x}{2x-3}\)
e) \(\dfrac{3\left(x-2\right)}{2x+1}\)-\(\dfrac{9x-3}{2x+1}\)
giải pt
a.\(\dfrac{x+5}{3\left(x-1\right)}+1=\dfrac{3x+7}{5\left(x-1\right)}\)
b.\(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}-\dfrac{8}{x^2+2x-3}=1\)
Bài 1: Thực hiện phép tính
a, \(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}\)+\(\dfrac{2}{x^2+3}\)+\(\dfrac{1}{x+1}\)
b, \(\dfrac{x+y}{2\left(x-y\right)}\)-\(\dfrac{x-y}{2\left(x+y\right)}\)+\(\dfrac{2y^2}{x^2-y^2}\)
c, \(\dfrac{x-1}{x^3}\)-\(\dfrac{x+1}{x^3-x^2}\)+\(\dfrac{3}{x^3-2x^2+x}\)
d, \(\dfrac{xy}{ab}\)+\(\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}\)-\(\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\)
e, \(\dfrac{x^3}{x-1}\)-\(\dfrac{x^2}{x+1}\)-\(\dfrac{1}{x-1}\)+\(\dfrac{1}{x+1}\)
f, \(\dfrac{x^3+x^2-2x-20}{x^2-4}\)-\(\dfrac{5}{x+2}\)+\(\dfrac{3}{x-2}\)
g, \(\left\{\dfrac{x-y}{x+y}+\dfrac{x+y}{x-y}\right\}\).\(\left\{\dfrac{x^2+y^2}{2xy}\right\}\).\(\dfrac{xy}{x^2+y^2}\)
h, \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}\)+\(\dfrac{1}{\left(b-c\right)\left(c-a\right)}\)+\(\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)
i, \(\dfrac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)
k, \(\left[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left\{\dfrac{x^2}{y}-\dfrac{y^2}{x}\right\}\right]\):\(\dfrac{x-y}{x}\)
Bài 2: Rút gọn các phân thức:
a, \(\dfrac{25x^2-20x+4}{25x^2-4}\)
b, \(\dfrac{5x^2+10xy+5y^2}{3x^3+3y^3}\)
c, \(\dfrac{x^2-1}{x^3-x^2-x+1}\)
d, \(\dfrac{x^3+x^2-4x-4}{x^4-16}\)
e, \(\dfrac{4x^4-20x^3+13x^2+30x+9}{\left(4x^2-1\right)^2}\)
Bài 3: Rút gọn rồi tính giá trị các biểu thức:
a, \(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\) với a = 4, b = -5, c = 6
b, \(\dfrac{16x^2-40xy}{8x^2-24xy}\) với \(\dfrac{x}{y}\) = \(\dfrac{10}{3}\)
c, \(\dfrac{\dfrac{x^2+xy+y^2}{x+y}-\dfrac{x^2-xy+y^2}{x-y}}{x-y-\dfrac{x^2}{x+y}}\) với x = 9, y = 10
Bài 4: Tìm các giá trị nguyên của biến số x để biểu thức đã cho cũng có giá trị nguyên:
a, \(\dfrac{x^3-x^2+2}{x-1}\)
b, \(\dfrac{x^3-2x^2+4}{x-2}\)
c, \(\dfrac{2x^3+x^2+2x+2}{2x+1}\)
d, \(\dfrac{3x^3-7x^2+11x-1}{3x-1}\)
e, \(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\)
Tìm đa thức A thỏa mãn điều kiện sau :
\(\dfrac{A\left(x-5\right)}{x^2-4x-5}=\dfrac{3x^2+9x}{x^2+4x+3}\)
\(\dfrac{x^2+x-6}{A\left(x-3\right)}=\dfrac{\left(5x-1\right)\left(x-2\right)}{5x^3-x^2+15x-3}\)
\(\dfrac{x^2-25}{2x^2+7x-15}=\dfrac{\left(x-5\right)A}{2x^2+x-6}\)