giúp tui nha !
Cho tam giác ABC(AB<AC), AD là tia phân giác của góc BAC(D∈BC). Trên cạnh AC lấy điểm M sao cho AM=AB
1) Chứng minh △ABD=△AMD
2) Gọi I là giao điểm của AD và BM. Chứng minh I là trung điểm của BM và AI \perp⊥BM.
3) Gọi K là trung điểm của AM, trên tia đối của tia KB lấy điểm P sao cho KB=KP. Chứng minh MP//AB
Bài 5 (3 điểm). Cho tam giác ABC có AB = AC và 0 A ˆ 90 . Gọi H là trung điểm của cạnh BC. a) Chứng minh ∆AHB = ∆AHC và AH là tia phân giác của góc BAC. b) Vẽ HI ⊥ AB tại I. Trên cạnh AC lấy điểm K sao cho AK = AI. Chứng minh: HK ⊥ AC. c) Gọi M là trung điểm của đoạn thẳng KC. Trên tia đối của tia MH lấy điểm N sao ccho NM = HM. Chứng minh: NK // BC.
cho tam giác ABC vuông tại B,AD là tia phân giác của góc BAC(D thuộc BC)và DHvuông góc với AC tại H.Gọi t là giao điểm của đường thẳng AB và H a,chứng minh AB=AH
b, chứng minh tam giác ACE cân
c,gọi M là trung điểm của EC,chứng minh A,D,M thẳng hàng
GIÚP MÌNH VỚI MÌNH CẦN GẤP!
Cho ∆ABC vuông tại A. Tia phân giác của góc B cắt AC tại D, DN⊥BC tại N. a) Chứng minh ∆DBA = ∆DBN. So sánh DA và DC. b) Gọi M là giao điểm của hai đường thẳng ND và BA. Chứng minh AM = NC c) Chứng minh ∆BMC cân. d) Gọi I là trung điểm của MC. Chứng minh ba điểm B, D, I thẳng hàng
Bài 5 Cho tam giác ABC vuông tại A ( AB < AC ). Trên cạnh BC lấy điểm D sao cho AB = BD. Vẽ tia phân giác của ABC cắt AC tại E, gọi F là giao điểm của DE và AB.
1) Chứng minh: ABE = DBE.
2) Chứng minh – BE vuông góc với AD tại M
3) Gọi N là trung điểm của CF. Chứng minh – 3 điểm B, E, N thẳng hàng.
Cho ΔABC (AB<AC). AE là tia phân giác góc BAC (E ϵ BC). Trên cạnh AC lấy điểm M sao cho AM=AB.
a) Chứng minh ΔABE=ΔAME.
b) AE cắt BM tại I. Chứng minh I là trung điểm của BM.
c) Trên tia đối của tia EM lấy điểm N sao cho EN=EC. Chứng minh ΔENB=ΔECM.
d) Chứng minh ba điểm A,B,N thẳng hàng.
Cho tam giác ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CD. Gọi I là giao điểm của BE và CD
a) Chứng minh rằng IB = IC, ID = IE
b) Chứng minh rằng BC song song với DE
c) Gọi M là trung điểm của BC. Chứng minh rằng ba điểm A, M, I thẳng hàng
Bài 4: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của cạnh BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE
a) Chứng minh △ABM = △ACM.
b) Chứng minh AM ⊥ BC.
c) Chứng minh △ADM = △AEM.
d) Gọi H là trung điểm của cạnh EC. Từ C vẽ đường thẳng song song với cạnh ME, đường thẳng này cắt tia MH tại F. Chứng minh ba điểm D, E, F thẳng hàng.
Bài 16: Cho ABC có AB = AC, gọi D là trung điểm của BC.
a) Chứng minh : ∆ADB = ∆ADC, từ đó suy ra AD là tia phân giác của \(\widehat{BAC}\)
b) Chứng minh : AD BC
c) Trên cạnh AB và cạnh AC lần lượt lấy hai điểm M, N sao cho AM = AN. Gọi K là giao điểm của AD và MN. Chứng minh MN // BC.
d) Gọi O là trung điểm của BM, trên tia đối của tia OD lấy điểm P sao cho OD =
OP. Chứng minh ba điểm M, N, P thẳng hàng.