cho a,b,c ≥0.CMR
a+b+c ≥\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Cho a,b,c \(\ge\) 0 . Cmr :
a, \(a+b\ge2\sqrt{ab}\)
b, \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
Cho các số thực dương a, b, c thỏa mãn: abc + a + b = 3ab. Chứng minh rằng:\(\sqrt{\frac{ab}{a+b+1}}+\sqrt{\frac{b}{bc+b+1}}+\sqrt{\frac{a}{ca+c+1}}\ge\sqrt{3}\)
Cho a,b,c,d,e \(\in\)\(R\) . Chứng minh các BĐT sau:
a/ a2 + b2 + c2 \(\ge\) ab + bc + ca
b/ a2 + b2 +1 \(\ge\) ab + a + b
c/ a2 + b2 +c2 + 3 \(\ge\) 2( a + b + c)
d/ a2 + b2 + c2 \(\ge\) 2( ab + bc - ca)
e/ a4 + b4 + c2 +1 \(\ge\) 2a( ab2 - a +c +1)
f/ \(\dfrac{a^2}{4}\)+ b2 + c2 \(\ge\) ab - ac +2bc
g/ a2 (1+b2) + b2 (1+c2) +c2 (1+a2) \(\ge\) 6abc
h/ a2 +b2+ c2+ d2+ e2 \(\ge\) a(b+c+d+e)
i/ \(\dfrac{1}{a}\)+ \(\dfrac{1}{b}\)+\(\dfrac{1}{c}\) \(\ge\) \(\dfrac{1}{\sqrt{ab}}\)+\(\dfrac{1}{\sqrt{bc}}\)+\(\dfrac{1}{\sqrt{ca}}\) , (a,b,c > 0)
j/ a+b+c \(\ge\) \(\sqrt{ab}\)+\(\sqrt{bc}\)+\(\sqrt{ca}\) ( a,b,c \(\ge\)0)
Rút gọn các biểu thức
a) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}\) (a,b ≥ 0)
b) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}\) (a,b ≥ 0; a ≠ b)
c) \(\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\frac{1}{a}\sqrt{4ab}+\frac{1}{b}\sqrt{\frac{b}{a}}\right):\left(1+\frac{2}{a}-\frac{1}{b}+\frac{1}{ab}\right)\) với a,b > 0
Bài 1: Giải phương trình :
\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\)
Bài 2 : cho các số không âm a,b,c . Chứng minh :
a, \(\dfrac{a+b}{2}\ge\sqrt{ab}\)
b, \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)
c, \(a+b+\dfrac{1}{2}\ge\sqrt{a}+\sqrt{b}\)
d, \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
Cho \(a,b,c\) là các số thực không âm. CMR:
\(3\left(a^2+b^2+c^2\right)\ge\) \(\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\) \(+\left(a-b\right)^2\) \(+\left(b-c\right)^2+\left(c-a\right)^2\ge\left(a+b+c\right)^2\)
HELP! Chứng minh
a, \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
b, \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)