Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc Hạnh

a,b,c nguyên dương và a+b+c=1. chứng minh rằng \(\left(1+\dfrac{1}{a}\right)\cdot\left(1+\dfrac{1}{b}\right)\cdot\left(1+\dfrac{1}{c}\right)>=64\)

Akai Haruma
5 tháng 1 2018 lúc 0:17

Lời giải:

Ta có:

\(\text{VT}=\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\frac{(a+1)(b+1)(c+1)}{abc}\) (1)

Thay \(1=a+b+c\) kết hợp với bất đẳng thức AM-GM:

\((a+1)(b+1)(c+1)=(a+a+b+c)(b+a+b+c)(c+a+b+c)\)

\(=[(a+b)+(a+c)][(b+c)(b+a)][(c+a)+(c+b)]\)

\(\geq 2\sqrt{(a+b)(a+c)}.2\sqrt{(b+c)(b+a)}.2\sqrt{(c+a)(c+b)}\)

\(\Leftrightarrow (a+1)(b+1)(c+1)\geq 8(a+b)(b+c)(c+a)\)

Tiếp tục áp dụng AM-GM:

\((a+b)(b+c)(c+a)\geq 2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\)

Suy ra \((a+1)(b+1)(c+1)\geq 64abc\) (2)

Từ (1);(2) ta có \(\text{VT}\geq 64\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)


Các câu hỏi tương tự
Vũ Tiền Châu
Xem chi tiết
Phan PT
Xem chi tiết
Tuấn
Xem chi tiết
Lê Thuỳ Lin
Xem chi tiết
Khởi My
Xem chi tiết
Nguyễn Quỳnh
Xem chi tiết
Như Ngọc Lê
Xem chi tiết
Văn Quyết
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết