tách như nầy nè
\(\dfrac{1}{\left(a^2+b^2\right)+\left(b^2+1\right)+2}\le\dfrac{1}{2ab+2b+2}=\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}\right)\)
tách như nầy nè
\(\dfrac{1}{\left(a^2+b^2\right)+\left(b^2+1\right)+2}\le\dfrac{1}{2ab+2b+2}=\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}\right)\)
a, Giải phương trình: 2\(\left(x-\sqrt{2x^2+5x-3}\right)=1+x\left(\sqrt{2x-1}-2\sqrt{x+3}\right)\)
b, Cho ba số thực dương a,b,c thỏa mãn a,b,c=1
Chứng minh rằng:\(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2}\)
a) Cho a , b > 0 CMR : 3(b2+2a2) ≥ (b+2a)2
b) Cho a,b,c > 0 thõa mãn ab+bc+ca = abc
CMR : \(\dfrac{\sqrt{b^2+2a^2}}{ab}+\dfrac{\sqrt{c^2+2b^2}}{bc}+\dfrac{\sqrt{a^2+2c^2}}{ca}\ge\sqrt{3}\)
Cho a;b;c >0 thỏa mãn \(a+b+c=\dfrac{1}{abc}\)
Cmr: \(\sqrt{\dfrac{\left(1+b^2c^2\right)\left(1+a^2c^2\right)}{c^2+a^2b^2c^2}}=a+b\)
Giúp em với ạ. Em cảm ơn các anh/chị ạ.
Bài 1 : cho x, y >0 và x2+y2=1. Tìm GTNN của \(P=\left(1+x\right)\cdot\left(1+\dfrac{1}{y}\right)+\left(1+y\right)\cdot\left(1+\dfrac{1}{x}\right)\)
Bài 2 : cho a, b, c > 0. CMR
\(\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}>=\dfrac{1}{2a+b+c}+\dfrac{1}{2b+a+c}+\dfrac{1}{2c+a+b}\)
Bài 3 : cho a, b, c, d >0. CMR
\(\dfrac{a+c}{a+b}+\dfrac{b+d}{b+c}+\dfrac{c+a}{c+d}+\dfrac{d+b}{d+a}>=4\)
cho a,b,c>0 và \(a^2+b^2+c^2=1\)
chứng minh rằng \(A=\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}+\sqrt{\dfrac{bc-2a^2}{1+bc-a^2}}+\sqrt{\dfrac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ca\)
Cho \(P=\dfrac{1}{3+2a+b+ab}+\dfrac{1}{3+2b+c+bc}+\dfrac{1}{3+2c+a+ca}\)
với a, b, c là các số thực dương thỏa mãn điều kiện:
\(a+b+c+ab+bc+ca+abc=0\)
Cho các số a,b,c>0 và thỏa mãn a+b+c=3. Tìm GTNN
a, \(P=\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\)
b, \(P=\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\)
c, \(P=\dfrac{a+1}{b^2+1}+\dfrac{b+1}{c^2+1}+\dfrac{c+1}{a^2+1}\)
Cho a,b,c >0. Chứng minh \(\dfrac{1}{\left(2a+b\right)\left(2a+c\right)}+\dfrac{1}{\left(2b+c\right)\left(2b+a\right)}+\dfrac{1}{\left(2c+a\right)\left(2c+b\right)}\ge\dfrac{1}{ab+bc+ca}\)
bài 1. Cho a = 2; b = 8; c = \(\sqrt{5}\) - 2
a) Tính M \(\sqrt{a}.\sqrt{b}\)
b) Tính N \(\sqrt{c^2}-\dfrac{1}{c}\)
c) Tìm x biết rằng \(2x^2+c\left(2c-\sqrt{a}\right)-c\sqrt{2}=0\)