Xin phép được sửa đề : CMR : \(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le6\)
Áp dụng BĐT cô - si ta có :
\(\left\{{}\begin{matrix}a\sqrt{3a\left(a+2b\right)}\le\frac{a\left(3a+a+2b\right)}{2}=a\left(2a+b\right)\\b\sqrt{3b\left(b+2a\right)}\le\frac{b\left(3b+b+2a\right)}{2}=b\left(2b+a\right)\end{matrix}\right.\)
\(\Rightarrow a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le2a^2+2ab+2b^2\)
Vậy ta cần chứng minh :
\(2a^2+2ab+2b^2\le6\Leftrightarrow a^2+ab+b^2\le3\)
Ta có : \(a^2+ab+b^2\le a^2+b^2+\frac{a^2+b^2}{2}=2+1=3\)
Vậy đẳng thức đã được chứng minh . Dấu \("="\) xảy ra khi \(a=b=1\)