Cho a,b,x,y∈R thoả mãn a2+b2=x2+y2=1.
Chứng minh rằng:
\(-\sqrt{2}\) ≤ a(x+y)+b(x-y) ≤\(\sqrt{2}\)
giải giúp mấy bài sau nha mn
thanks nhiều
1. Tìm nghiệm nguyên của pt:
a) \(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^3\)
b) \(12x^2+6xy+3y^2=28\left(x+y\right)\)
2. Cho x,y,z>0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\)
C/m: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}=< 1\)
3. Cho a,b,c>0 và abc=1
C/m: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}>=\dfrac{3}{2}\)
4. Cho x,y>0 và x + y >= 2
Tìm GTNN của biểu thức \(A=4\left(x+y\right)+\dfrac{1}{x+1}+\dfrac{1}{y+1}+1\)
chứng minh rằng :
a, x+2y+\(\dfrac{25}{x}\)+\(\dfrac{27}{y^2}\)\(\ge\) 19 ( \(\forall\)x,y \(\)> 0 )
b, \(x+\dfrac{1}{\left(x-y\right)y}\ge3\) ( \(\forall\)x>y>0 )
c,\(\dfrac{x}{2}+\dfrac{16}{x-2}\ge13\left(\forall x>2\right)\)
d, \(a+\dfrac{1}{a^2}\ge\dfrac{9}{4}\left(\forall x\ge2\right)\)
e, a+\(\dfrac{1}{a\left(a-b\right)^2}\ge2\sqrt{2}\) ( \(\forall x>y\ge0\))
f, \(\dfrac{2a^3+1}{4b\left(a-b\right)}\ge3[\forall a\ge\dfrac{1}{2};\dfrac{a}{b}>1]\)
g, x+\(\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}\ge3\left(\forall x>y\ge0\right)\)
h, \(2a^4+\dfrac{1}{1+a^2}\ge3a^2-1\)
giúp mình 2 câu này
CHỨNG MINH CÁC BẤT ĐẲNG THỨC SAU
a. y(1/x+1/z)+1/y (x+z) <= (x+z) (1/x +1/z) ( z>= y >= x >0)
b. b/a+a/c+c/b >= a/b +b/c +c/a (a>=b>=c>0)
bài 1: chứng minh các BĐT sau:
a) \(a^2b+\frac{1}{b}\ge2a,\left(\forall a,b>0\right)\)
b) (a+b)(ab+1)≥4ab,(∀a,b>0)
c) (a+b)(a+2)(b+2)≥16ab,(∀a,b>0)
d) \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\ge8,\left(\forall a,b,c>0\right)\)
bài 2: cho phương trình tham số của đường thẳng (d):\(\left\{{}\begin{matrix}x=5+t\\y=-9-2t\end{matrix}\right.\).Viết phương trình tổng quát của (d):
bài 3: cho đường thẳng Δ có phương trình tổng quát x-y+2=0. Viết phương trình tham số của Δ
1/cho số a >0 tìm GTNN của P = 2a +\(\frac{4}{a}\)+\(\frac{16}{a+2}\)
2/ cho a,b,c là số thực ϵ [0;\(\frac{1}{4}\)) chứng minh:
\(\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)
3/ cho các số dương a,b,c tỏa abc = 1. Chứng minh
\(\frac{1}{a^2c+b^2c+1}+\frac{1}{b^2a+c^2a+1}+\frac{1}{c^2b+a^2b+1}\le1\)
1) Cho a, b, c > 0 và a + b + c = 1. CMR: 9(a4 + b4 + c4) \(\ge\) a2 + b2 + c2.
2) Cho x, y, z dương thỏa mãn x + y + z = 1. CMR: \(\left(1+\frac{1}{x}\right)^4+\left(1+\frac{1}{y}\right)^4+\left(1+\frac{1}{z}\right)^4\ge768\)
cho a b c > 0. Chứng minh các bất đẳng thức :
1, \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
2, \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{16}{a+b+c+d}\)
3, ( 1+a+b) (a+b+ab) \(\ge9ab\)
4, \(\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2\)
5, \(3a^3+7b^3\ge9ab^2\)
6, \(\left(\sqrt{a}+\sqrt{b}\right)^2\ge2\sqrt{2\left(a+b\right)\sqrt{ab}}\)
Bài 1:Cho x, y, z >0 thỏa mãn x+y+z=12.Tìm GTLN của biểu thức
\(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-15}{z}\)
Bài 2:Cho a,b,c là số thực dương. Tìm GTNN của biểu thức
\(P=\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}+\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)