\(a) 5^{n+1}+7.5^n+5.7^{n+2}+7^{n+3}\\ =5^n . 5+7.5^n+5.7^{n+2}+7^{n+2}.7\\ =5^n( 5+7)+7^{n+2}(5+7)\\ =5^n.12+7^{n+2}.12\\ =12.(5^n+7^{n+2})\)
Vì 12 ⋮ 2
=> 12.5n + 7n+2 ⋮ 2
Vậy \( 5^{n+1}+7.5^n+5.7^{n+2}+7^{n+3}\\\)⋮ 2
\(b) 3^{n+1}+4^{b+1}+3.4^b+4.3^n\\ =3^n.3+4^b.4+3.4^b+4.3^n\\ =(4^b.4+3.4^b)+(3^n.3+4.3^n)\\ =4^b(4+3)+3^n(3+4)\\ =4^n.7+3^n.7\\ =7.(4^n+3^n)\)
Vì 7 ⋮ 7
=>7.(4n + 3n) ⋮ 7
Vậy \(3^{n+1}+4^{b+1}+3.4^b+4.3^n\\\)⋮ 7