CMR: Với mọi n là số nguyên thì
a) n2 + 7n + 22 không chia hết cho 9
b) n2 - 5n - 49 không chia hết cho 69
chứng minh rằng:
a) (n+6)^2-(n-6)^2 chia hết cho 24 với mọi n thuộc Z
b) n^2+4n+3 chia hết cho 8 với mọi n thuộc Z
c) (n+3)^2-(n-1)^2 chia hết cho 8 với mọi
giải chi tiết,cảm ơn!
Chứng minh rằng:
a, \(\left(n^2+n-1\right)^2-1\) chia hết cho 24.
b, \(n^3+6n^2+8n\) chia hết cho 48 với n chẵn.
a) n^5 - 5n^3 + 4n chia hết cho 120 với mọi n nguyên
b) n^3 - 3n^2 - n + 3 chia hết cho 48 với mọi n lẻ
c) n^3 + 3n^2 - n - 3 chia hết cho 48 với mọi n lẻ
Help me ! Thanks in advance ^_^
bài 1: cho n là số nguyên. cmr:
a, A=n3-19n chia hết cho 6
b, B=n4-10n2+9 chia hết cho 384 (với n lẻ)
chứng minh rằng ,với mọi số n nguyên
a/ (4n+3)^2-25 chia hết cho 8
b/(2n+3)^2-9 chia hết cho 4
c/(3n+4)^2-16 chia hết cho 3
Cho a + b + c chia hết cho 6 và a, b, c là số nguyên. Chứng minh \(\left(a^3+b^3+c^3\right)\) chia hết cho 6
1. Cho các số nguyên a, b, c. CMR
Nếu a+b+c chia hết cho 30 thì \(a^5+b^5+c^5\)chia hết cho 30
2.Cho các số nguyên a, b, c thỏa mãn a+b+c=0. CMR
a,\(a^3+b^3+c^3⋮3abc\)
b,\(a^5+b^5+c^5⋮5abc\)
3. Viết số 1998 thành tổng 3 số tự nhiên tùy ý. Chứng minh rằng tổng các lập phương của 3 số tự nhiên đó chia hết cho 6
4. Chứng minh rằng với mọi số nguyên a và b
a,\(a^3b-ab^3⋮6\)
b, \(a^5b-ab^5⋮30\)
5.Chứng minh rằng mọi số tự nhiên đều được viết dưới dạng \(b^3+6c\) trong đó b và c là các số nguyên
6.chứng minh rằng tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
7. Chứng minh rằng nếu tổng các lập phương của 3 số nguyên chia hết cho 9 thì tồn tại một trong 3 số đó là bội của 3