\(A=\frac{\sqrt{3}sinx.\left(cosx.cos\frac{\pi}{6}-sinx.sin\frac{\pi}{6}\right)+cosx\left(sin\frac{\pi}{3}cosx-cos\frac{\pi}{6}.sinx\right)}{sin\left(2x+\frac{\pi}{3}\right)}\)
\(A=\frac{\frac{3}{2}sinx.cosx-\frac{\sqrt{3}}{2}sin^2x+\frac{\sqrt{3}}{2}cos^2x-\frac{1}{2}sinx.cosx}{sin\left(2x+\frac{\pi}{3}\right)}\)
\(A=\frac{sinx.cosx+\frac{\sqrt{3}}{2}\left(cos^2x-sin^2x\right)}{sin\left(2x+\frac{\pi}{3}\right)}\)
\(A=\frac{\frac{1}{2}sin2x+\frac{\sqrt{3}}{2}cos2x}{sin\left(2x+\frac{\pi}{3}\right)}=\frac{sin2x.cos\frac{\pi}{3}+cos2x.sin\frac{\pi}{3}}{sin\left(2x+\frac{\pi}{3}\right)}\)
\(A=\frac{sin\left(2x+\frac{\pi}{3}\right)}{sin\left(2x+\frac{\pi}{3}\right)}=1\)