đk câu a hình như sai đấy
đk câu a hình như sai đấy
áp dụng bđt cô si để tìm GTLN của các biếu thức sau:
a, y= (2x+5)(5-x) 0< x<1
b, y= ( 6x+3) (5-2x) \(\frac{-1}{2}\le x\le\frac{5}{2}\)ư
c, \(\frac{x}{x^2+2}\) x>0
1:Cho x;y>0:\(\frac{2}{x}+\frac{3}{y}=6\).Tìm min P=x+y
2:Cho x;y;z>0:x+y+z\(\le\)1.Chứng minh\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82}\)
3:cho a;b;c;d>0.Chứng minh\(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
4:Tìm max,min y=x+\(\sqrt{4-x^2}\)
5:Cho \(a\ge1;b\ge1\).Chứng minh \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
6:Chứng minh:\(\left(ab+bc+ca\right)^2\ge3\text{a}bc\left(a+b+c\right)\)
tìm gtnn, gtln nếu có
1. \(y=x^2-\sqrt{5-x^2}\)
2. \(y=\frac{x^2-2x-2}{x-1}\)
3. \(y=2\sqrt{\left(3-2x\right)\left(x+2\right)}3+x,-2\le x\le\frac{3}{2}\)
4. \(y=\frac{x}{20}+\frac{1}{\sqrt{x-1}}\)
3.Áp dụng bđt Cô-si, tìm GTNN:
a)\(y=\frac{x}{2}+\frac{2}{x-1};x>1\)
b)\(y=\frac{5x}{3}+\frac{5}{3x-1};x>\frac{1}{3}\)
c)\(y=\frac{2x}{1-x}+\frac{3}{x};0< x< 1\)
d)\(y=\frac{x^2+2020x+9}{x};x>0\)
1. Giải bft ( lập bảng xét dấu nếu cần )
\(\frac{x}{x+1}-2\sqrt{\frac{x+1}{x}}>3\)
2. Chứng minh: \(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\) ; với a,b,c > 0
3. Cho x,y,z > 0 thỏa mãn x+y+z = 1. Tìm GTLN của biểu thức: P = \(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
B1 xét dấu các biểu thức
a f(x)=(1-2x) (2x2-5x+3)
b g(x)=\(\frac{-6x^3-19x^2-11x+6}{x^2-4x+3}\)
B2 giải bất phương trình
\(\frac{2-x}{x^3+x^2}>\frac{1-2x}{x^3-3x^2}\)
B3 Tìm tập xác định của hàm số y=\(\sqrt{\frac{1}{x^2+7x+6}-\frac{1}{x^2-2x+5}}\)
tìm tập xác định của mỗi hàm số sau : a) y = \(\sqrt{\frac{1}{x^2-7x+5}-\frac{1}{x^2+2x+5}}\) ; b) y = \(\sqrt{\sqrt{x^2-5x+14}-x+3}\)
tìm tập xác định của mỗi hàm số sau : a) y = \(\sqrt{\frac{1}{x^2-7x+5}-\frac{1}{x^2+2x+5}}\) ; b) y = \(\sqrt{\sqrt{x^2-5x+14}-x+3}\)
tìm tập xác định của mỗi hàm số sau : a) y = \(\sqrt{\frac{1}{x^2-7x+5}-\frac{1}{x^2+2x+5}}\) ; b) y = \(\sqrt{\sqrt{x^2-5x+14}-x+3}\)