c) \(5x-7=3x+9\)
d) \(5x-\left|9-7x\right|=3\)
e) \(-5+\left|3x-1\right|+6=\left|-4\right|\)
h) \(5^{-1}.25^x=125\)
\(\Rightarrow\frac{1}{5}.25^x=125\)
\(\Rightarrow25^x=125:\frac{1}{5}\)
\(\Rightarrow25^x=625\)
\(\Rightarrow25^x=25^2\)
\(\Rightarrow x=2\)
Vậy \(x=2.\)
Chúc bạn học tốt!
g) \(\left(x-1\right)^2=\left(x-1\right)^4\)
\(\Rightarrow\left(x-1\right)^2-\left(x-1\right)^4=0\)
\(\Rightarrow\left(x-1\right)^2.\left[1-\left(x-1\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\1-\left(x-1\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0+1\\x-1=1\\x-1=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=1+1\\x=\left(-1\right)+1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
Vậy \(x\in\left\{1;2;0\right\}.\)
i) \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|=4x\)
Ta có:
\(\left\{{}\begin{matrix}\left|x+1\right|\ge0\\\left|x+2\right|\ge0\\\left|x+3\right|\ge0\end{matrix}\right.\forall x.\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+3\right|\ge0\) \(\forall x.\)
\(\Rightarrow4x\ge0\)
\(\Rightarrow x\ge0.\)
Lúc này ta có: \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)=4x\)
\(\Rightarrow x+1+x+2+x+3=4x\)
\(\Rightarrow\left(x+x+x\right)+\left(1+2+3\right)=4x\)
\(\Rightarrow3x+6=4x\)
\(\Rightarrow6=4x-3x\)
\(\Rightarrow6=1x\)
\(\Rightarrow x=6\left(TM\right).\)
Vậy \(x=6.\)
Chúc bạn học tốt!