\(a,\Rightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\\ b,\Rightarrow x^2=-1\left(vô.lí\right)\Rightarrow x\in\varnothing\\ c,\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\\ d,\Rightarrow x^2=3\Rightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
a) \(\Rightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
b) \(x^2+1=0\)
\(\Rightarrow x^2=-1\left(VLý.do.x^2\ge0\forall x\right)\)
Vậy \(S=\varnothing\)
c) \(\Rightarrow x=\pm\sqrt{2}\)
d) \(\Rightarrow x^2=3\Rightarrow x=\pm\sqrt{3}\)