a/ \(x^2=5\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)
vậy .....
b/ \(x^2-9=0\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=3^2\\x^2=\left(-3\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy .......( nhầm cái ngoặc)
c/ \(x^2+1=0\)
\(\Leftrightarrow x^2=-1\)
Mà \(x^2\ge0\Leftrightarrow x\in\varnothing\)
Vậy ....
d/ \(\left(x-1\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=3^2\\\left(x-1\right)^2=\left(-3\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
Vậy ...
e/ \(\left(2x+3\right)^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x+3\right)^2=5^2\\\left(2x+3\right)^2=\left(-5\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Vậy .....
f/ Ta có :
\(x^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=1^2\\x^2=\left(-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy ...
\(x^2=5\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)
\(\left(x-1\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
\(x^2-9=0\Leftrightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
\(\left(2x+3\right)^2=25\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
\(x^2+1=0\Rightarrow x^2=-1\Rightarrow x\in\varnothing\)
\(x^2=1\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)