Ta có:
(2x + \(\frac{1}{3}\))4 \(\ge\) 0 \(\forall\) x \(\in\) Z
=> (2x + \(\frac{1}{3}\))4 - 1 \(\ge\) -1 \(\forall\) x \(\in\) Z
=> A \(\ge\) -1 \(\forall\) x \(\in\) Z
Dấu "=" xảy ra khi (2x + \(\frac{1}{3}\))4 = 0
=> 2x + \(\frac{1}{3}\) = 0
=> 2x = 0 - \(\frac{1}{3}\)
=> 2x = \(\frac{-1}{3}\)
=> x = \(\frac{-1}{6}\)
Vậy GTNN của A = -1 khi x = \(\frac{-1}{6}\).
b) Lại có:
- (\(\frac{4}{9}\)x - \(\frac{2}{15}\))6 \(\le\) 0 \(\forall\) x \(\in\) Z
=> - (\(\frac{4}{9}\)x - \(\frac{2}{15}\))6 + 3 \(\le\) 3 \(\forall\) x \(\in\) Z
=> B \(\le\) 3 \(\forall\) x \(\in\) Z
Dấu "=" xảy ra khi:
(\(\frac{4}{9}\)x - \(\frac{2}{15}\))6 = 0
=> \(\frac{4}{9}\)x - \(\frac{2}{15}\) = 0
=> \(\frac{4}{9}\)x = \(\frac{2}{15}\)
=> x = \(\frac{2}{15}\) : \(\frac{4}{9}\)
=> x = \(\frac{3}{10}\)
Vậy GTLN của B = 3 khi x = \(\frac{3}{10}\)
a)Ta thấy: \(\left(2x+\frac{1}{3}\right)^4\ge0\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^4-1\ge-1\)
\(\Rightarrow A\ge-1\)
Dấu "=" xảy ra khi \(\left(2x+\frac{1}{3}\right)^4=0\Leftrightarrow x=-\frac{1}{6}\)
Vậy \(Min_A=-1\) khi \(x=-\frac{1}{6}\)
b)Ta thấy:\(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\)
\(\Rightarrow-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\)
\(\Rightarrow-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\le3\)
\(\Rightarrow B\le3\)
Dấu "=" xảy ra khi \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6=0\Rightarrow x=\frac{3}{10}\)
Vậy \(Max_B=3\) khi \(x=\frac{3}{10}\)