\(A=xz^3-yz^3+x^3y-x^3z+y^3z-xy^3\)
\(=\left(xz^3-xy^3\right)+\left(x^3y-x^3z\right)+\left(y^3z-yz^3\right)\)
\(=x\left(z-y\right)\left(z^2+zy+y^2\right)-x^3\left(z-y\right)+yz\left(y^2-z^2\right)\)
\(=\left(z-y\right)\left(xz^2+xzy+xy^2-x^3\right)-yz\left(z-y\right)\left(z+y\right)\)
\(=\left(z-y\right)\left(xz^2+xyz+xy^2-x^3-yz^2-y^2z\right)\)
\(=\left(z-y\right)\left[x\left(z^2-x^2\right)+y^2\left(x-z\right)+xyz-yz^2\right]\)
\(=\left(z-y\right)\left[x\left(z-x\right)\left(z+x\right)-y^2\left(z-x\right)+yz\left(x-z\right)\right]\)
\(=\left(z-y\right)\left(z-x\right)\left(xz+x^2-y^2-yz\right)\)
b: x,y,z là 3 số tự nhiên liên tiếp có tổng bằng 36
nên x=a;y=a+1;z=a+2 và x+y+z=36
=>3a+3=36
=>a=11
=>x=11; y=12; z=13
\(A=\left(13-12\right)\left(13-11\right)\cdot\left(13\cdot11+11^2-12^2-12\cdot13\right)\)
\(=2\cdot\left(143+121-144-156\right)\)
\(=2\cdot\left(120-156\right)=2\cdot\left(-36\right)=-72\)