Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kiều Ngọc Tú Anh

a) Phân tích đa thức thành nhân tử

A=(x-y)z3+(y-z)x3+(z-x)y3

b)Tính A khi x,y,z là 3 số tự nhiên liên tiếp có tổng bằng 36

Nguyễn Lê Phước Thịnh
4 tháng 9 2022 lúc 19:46

\(A=xz^3-yz^3+x^3y-x^3z+y^3z-xy^3\)

\(=\left(xz^3-xy^3\right)+\left(x^3y-x^3z\right)+\left(y^3z-yz^3\right)\)

\(=x\left(z-y\right)\left(z^2+zy+y^2\right)-x^3\left(z-y\right)+yz\left(y^2-z^2\right)\)

\(=\left(z-y\right)\left(xz^2+xzy+xy^2-x^3\right)-yz\left(z-y\right)\left(z+y\right)\)

\(=\left(z-y\right)\left(xz^2+xyz+xy^2-x^3-yz^2-y^2z\right)\)

\(=\left(z-y\right)\left[x\left(z^2-x^2\right)+y^2\left(x-z\right)+xyz-yz^2\right]\)

\(=\left(z-y\right)\left[x\left(z-x\right)\left(z+x\right)-y^2\left(z-x\right)+yz\left(x-z\right)\right]\)

\(=\left(z-y\right)\left(z-x\right)\left(xz+x^2-y^2-yz\right)\)

b: x,y,z là 3 số tự nhiên liên tiếp có tổng bằng 36

nên x=a;y=a+1;z=a+2 và x+y+z=36

=>3a+3=36

=>a=11

=>x=11; y=12; z=13

\(A=\left(13-12\right)\left(13-11\right)\cdot\left(13\cdot11+11^2-12^2-12\cdot13\right)\)

\(=2\cdot\left(143+121-144-156\right)\)

\(=2\cdot\left(120-156\right)=2\cdot\left(-36\right)=-72\)


Các câu hỏi tương tự
Kiều Ngọc Tú Anh
Xem chi tiết
Winter
Xem chi tiết
Lê Phương Mai
Xem chi tiết
:(((
Xem chi tiết
Tham Le
Xem chi tiết
lê minh
Xem chi tiết
Quách Tử Hi
Xem chi tiết
ko ko
Xem chi tiết
TrịnhAnhKiệt
Xem chi tiết