Giải
a) Ta có: \(\left(\sqrt{a+b}\right)^2=a+b\) (1)
\(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\) (2)
Vì a > 0, b > 0 nên \(2\sqrt{ab}>0\), do đó từ (1) và (2) suy ra
\(\left(\sqrt{a+b}\right)^2< \left(\sqrt{a}+\sqrt{b}\right)^2\) hay \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)
b) Áp dụng câu a) cho hai số dương 2004 và 2005, ta có
\(\sqrt{2004+2005}< \sqrt{2004}+\sqrt{2005}\)