\(7^{1996}+7^{1995}+7^{1994}=7^{1994}\left(7^2+7+1\right)=7^{1994}.57⋮57\)
\(7^{1996}+7^{1995}+7^{1994}=7^{1994}\left(7^2+7+1\right)=7^{1994}.57⋮57\)
Cho hai số nguyên dương a, b thỏa mãn a2 chia hết cho b, b3 chia hết cho a2, a4 chia hết cho b3, ... Chứng minh rằng : a = b
n thuộc N. C/m: a, \(7^{n+2}+8^{2n+1}\) chia hết cho 57
b, \(10^n-9n-1\) chia hết cho 81
Cho p là số nguyên tố khác 2 và a,b là hai số tự nhiên lẻ sao cho a+b chia hết cho p và a-b chia hết cho p-1. Chứng minh rằng \(a^b+b^a\) chia hết cho p
Chứng minh: a,\(n^3+6n^2+8n\) chia hết cho 48 ( với n chẵn)
b, \(n^4-10n^2+9\) chia hết cho 384 ( với n lẻ)
Chứng minh rằng :
A = a(a+2) - (a-7)(a-5) chia hết cho 7 với mọi a là số nguyên .
Cho a,b,c thỏa mãn a2+b2=c2.Chứng minh ab chia hết cho (a+b+c)
Chứng minh rằng :
a) \(n^3+6n^2+8n\) chia hết cho 48 với mọi số chẵn n
b) \(n^4-10n^2+9\) chia hết cho 384 với mọi số lẻ n
chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 9
Chứng minh rằng n(n+1)(n+2) chia hết cho 3.