a, Chứng minh bất đẳng thức a2+b2+2 ≥ 2(a+b)
b,Cho hai số thực x,y thỏa mãn điều kiện: x^2+y^2 = 1. Tìm GTLN và GTNN của x+y
c, Cho a,b > 0 và a+b = 1. Tìm GTNN của S=\(\dfrac{1}{ab}\)+1/a2+b2
Cho a, b. c là độ dài 3 cạnh của một tam giác. Chứng minh rằng: 4b2c2 – (a2 + b2 + c2) > 0
Chứng minh rằng:
52005 + 52003 chia hêt cho 13
b) a2 + b2 + 1 ≥ ab + a + b
Cho a + b + c = 0. chứng minh:
a3 + b3 + c3 = 3abc
Các cao nhân giúp em ạ
em cảm ơn trước
cho 3 số dương a,b,c thỏa mãn ab+bc+ca=3.Chứng minh rằng :(a+b)(b+c)(c+a)>=8
cho a,b,c > 0 thỏa mãn a + b + c = 6. Chứng minh:
\(\dfrac{a}{\sqrt{b^3+1}}+\dfrac{b}{\sqrt{c^3+1}}+\dfrac{c}{\sqrt{a^3+1}}\ge2\)
Cho hai số nguyên dương a, b thỏa mãn a2 chia hết cho b, b3 chia hết cho a2, a4 chia hết cho b3, ... Chứng minh rằng : a = b
Cho a, b, c, d >0 thỏa mãn a > c+d, b > c+d
Chứng minh: ab> ad+ bc
Cho p là số nguyên tố khác 2 và a,b là hai số tự nhiên lẻ sao cho a+b chia hết cho p và a-b chia hết cho p-1. Chứng minh rằng \(a^b+b^a\) chia hết cho p
Cho a , b là các số nguyên thỏa mãn (a+b) chia hết cho 3. CM (a3 +b3 ) chia hết cho 9