a. Hàm có 3 cực trị \(\Rightarrow m< 0\)
\(y'=8x^3+4mx=4x\left(2x^2+m\right)=0\Rightarrow\left[{}\begin{matrix}x=0;y=-\dfrac{3m}{2}\\x=-\sqrt{-\dfrac{m}{2}};y=-\dfrac{m^2+3m}{2}\\x=\sqrt{-\dfrac{m}{2}};y=-\dfrac{m^2+3m}{2}\end{matrix}\right.\)
Trong đó \(A\left(0;-\dfrac{3m}{2}\right)\) là cực đại và B, C là 2 cực tiêu
Do tam giác ABC luôn cân tại A \(\Rightarrow\) tâm I của đường tròn ngoại tiếp luôn nằm trên trung trực BC hay luôn nằm trên Oy
Mà tứ giác ABCO nội tiếp \(\Rightarrow OI=AI\Rightarrow I\) là trung điểm OA (do I, O, A thẳng hàng, cùng nằm trên Oy)
\(\Rightarrow I\left(0;-\dfrac{3m}{4}\right)\)
Mặt khác trung điểm BC cũng thuộc Oy và IB=IC (do I là tâm đường tròn ngoại tiếp)
\(\Rightarrow\) I trùng trung điểm BC
\(\Rightarrow-\dfrac{3m}{4}=-\dfrac{m^2+3m}{2}\) \(\Rightarrow m\)
b.
Từ câu a ta thấy khoảng cách giữa 2 cực đại là:
\(\left|x_B-x_C\right|=2\sqrt{-\dfrac{m}{2}}=5\Rightarrow m=-\dfrac{25}{2}\)
Opps, phần a lý luận bị nhầm lẫn.
Từ việc IB=IC, và trung điểm BC thuộc Oy ko thể dẫn tới kết luận I là trung điểm BC (vì I, B, C ko thẳng hàng)
Do đó phải sửa lại:
\(\left\{{}\begin{matrix}\overrightarrow{IB}=\left(-\sqrt{-\dfrac{m}{2}};\dfrac{-2m^2-3m}{4}\right)\\\overrightarrow{IO}=\left(0;\dfrac{3m}{4}\right)\end{matrix}\right.\)
\(IB=IO\Rightarrow-\dfrac{m}{2}+\left(\dfrac{-2m^2-3m}{4}\right)^2=\left(\dfrac{3m}{4}\right)^2\)
\(\Leftrightarrow m^4+3m^3-2m=0\)
\(\Leftrightarrow m\left(m+1\right)\left(m^2+2m-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}m=0\left(loại\right)\\m=-1\\m=-1+\sqrt{3}\left(loại\right)\\m=-1-\sqrt{3}\end{matrix}\right.\)