\(99^{20}=\left(99^2\right)^{10}=9801^{10}\)
Do 9801 < 9999
⇒ 980110 < 999910.
\(99^{20}=\left(99^2\right)^{10}=9801^{10}\)
Do 9801 < 9999
⇒ 980110 < 999910.
So sánh
333444 và 444333
8742 và 870 x 878
3111 và 1714
921 và 7297
354 và 281
9920 và 999910
Mình đang cần gấp , các bạn giải giúp mình nhé !
Cảm ơn !!!!!
Tìm a;b
b) 2^a + 342 = 7^b
c) 2^a + 80 = 3^b
d) 5^a + 9999 = 20b
e) 10^a + 168 = b^2
f) 5^a + 323 = b^2
Tính:
a)1*4*7+4*7*10+7*10*13+....+100*103*106
b)1*4+4*7+7*10+.....+100*103
c)1*1*1+4*4*4+7*7*7+....+99*99*99
d)1*3*3*3+3*5*5*5+5*7*7*7+.....+49*51*51*51
e)1*99+2*98+3*97+......+50*50
f)1*99+3*97+5*95+....+49*51
Giúp mình nhé!
1. A = 5+5^3+5^5+...+5^99
A có chia hết cho 13 không?
2. B = 1+5+5^2+...+5^98
Chứng minh B chia hết cho 31
3. So sánh
a. 2^25 và 3^16
b. 2^150 và 3^100
c. 2^10 + 3^20 + 4^30 và 3.4^10
d. 1000^3 và 2^30
e. 1990^10+1990^9 và 1991^10
f. 63^7 và 16^12
g. (1/32)^7 và (1/16)^9
h. 3^39 và 11^21
Chứng minh rằng 3+33+35+....+339+399chia hết cho 10.
Mấy anh làm giúp em câu này
A=4+4 mũ 2+4 mũ 3+.....+4 mũ 99
B=5+5 mũ 2+5 mũ 3+.....+5 mũ 10
C=6+6 mũ 2+6 mũ 3+.....+9 mũ 10
Chứng tỏ rằng:
a) \(3+3^2+3^3+3^4+...+3^{99}⋮13\)
b) \(81^7-27^9-9^{13}⋮45\)
c)\(24^{54}.54^{24}.2^{10}⋮72^{63}\)