a) Có: \(3+3^2+3^3+3^4+...+3^{99}\\ =\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\\ =\left(3+3^2+3^3\right)+3^3\left(3+3^2+3^3\right)+...+3^{97}\left(3+3^2+3^3\right)\\ =39+3^3\cdot39+...+3^{97}\cdot39\\ =13\cdot3+3^3\cdot13\cdot3+...+3^{97}\cdot13\cdot3\\ =13\left(3+3^4+...+3^{98}\right)⋮13\left(đpcm\right)\)
b) Có: \(81^7-27^9-9^{13}\\ =\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\\ =3^{28}-3^{27}-3^{26}\\ =3^{26}\left(3^2-3-1\right)\\ =3^{24}\cdot\left(3^2\cdot5\right)\\ =3^{24}\cdot45⋮45\left(đpcm\right)\)
c) Có: \(24^{54}\cdot54^{24}\cdot2^{10}\\ =\left(2^3\cdot3\right)^{54}\cdot\left(2\cdot3^3\right)^{24}\cdot2^{10}\\ =2^{162}\cdot3^{54}\cdot2^{24}\cdot3^{72}\cdot2^{10}\\ =2^{196}\cdot3^{126}\\ =2^7\cdot\left(2^{189}\cdot3^{126}\right)\\ =2^7\cdot\left[\left(2^3\right)^{63}\cdot\left(3^2\right)^{63}\right]\\ =2^7\left(8^{63}\cdot9^{63}\right)\\ =2^7\cdot72^{63}⋮72^{63}\left(đpcm\right)\)
a) ta có: 3 + 32 + 33 + 34 + ... + 399
= (3 + 32 + 33) + (34 + 35 +36) + ... + (397 + 398 + 399)
= 3(1 + 3 + 32) + 34(1 + 3 + 3) + ... + 396(1 + 3 + 3)
= 3.13 + 34.13 + ... + 396.13
= 13(3 + 34 + ... + 396) ⋮ 13
vậy (3 + 32 + 33 + 34 + ... + 399) ⋮ 13
b) ta có: 817 - 279 - 913
= (34)7 - (33)9 - (32)13
= 328 - 327 - 326
= 326(32 - 3 - 1)
= 326 . 5 = 324 (9.5) = 324 . 45 ⋮ 45
Vậy (817 - 279 - 913) ⋮ 45
c) ta có: 2454.5424.210
= (23.3)54 . (2.33)24 . 210
= 2162 . 354 . 224 . 372 . 210
= 2196 . 3126
= (2193.3124).(23.32)
= (2193.3124).72 ⋮ 72
vậy (2454.5424.210) ⋮ 72