\(\dfrac{8^n}{2^n}=4\)
\(=\left(\dfrac{8}{2}\right)^n=4\)
\(=4^n=4\)
\(\Rightarrow n=1\)
Ta có :\(\dfrac{8^n}{2^n}=4\)
\(\rightarrow\dfrac{\left(4.2\right)^n}{2^n}=4\\ \rightarrow\dfrac{4^n.2^n}{2^n}=4\\ \rightarrow4^n=4\\ \Rightarrow n=1\)
\(\dfrac{8^n}{2^n}=4\\ \Leftrightarrow\left(\dfrac{8}{2}\right)^n=4\\ \Leftrightarrow4^n=4^1\\ \Rightarrow n=1\)