phân tích đa thức thành nhân tử bằng phương pháp nhóm nhiều hạng tử nha
(6x+3)-(2x-5)(2x+1)
= 3(2x+1)-(2x-5)(2x+1)
= ( 2x+1)(3-2x-5)
phân tích đa thức thành nhân tử bằng phương pháp nhóm nhiều hạng tử nha
(6x+3)-(2x-5)(2x+1)
= 3(2x+1)-(2x-5)(2x+1)
= ( 2x+1)(3-2x-5)
I) THỰC HIỆN PHÉP TÍNH
a) 2x(x^2-4y)
b)3x^2(x+3y)
c) -1/2x^2(x-3)
d) (x+6)(2x-7)+x
e) (x-5)(2x+3)+x
II phân tích đa thức thành nhân tử
a) 6x^2+3xy
b) 8x^2-10xy
c) 3x(x-1)-y(1-x)
d) x^2-2xy+y^2-64
e) 2x^2+3x-5
f) 16x-5x^2-3
g) x^2-5x-6
IIITÌM X BIẾT
a)2x+1=0
b) -3x-5=0
c) -6x+7=0
d)(x+6)(2x+1)=0
e)2x^2+7x+3=0
f) (2x-3)(2x+1)=0
g) 2x(x-5)-x(3+2x)=26
h) 5x(x-1)=x-1
IV TÌM GTNN,GTLN.
a) tìm giá trị nhỏ nhất
x^2-6x+10
2x^2-6x
b) tìm giá trị lớn nhất
4x-x^2-5
4x-x^2+3
Bài 1 : làm tính chia
a, ( 6x^2 + 13x - 5x ) : 2x + 5
b, ( 12x^2 - 14x + 3 - 6x^3 + x^4) : (1- 4x + x^2)
c, ( 2x^2 - 5x^3 + 2x + 2x^4 -1 ):( x^2 - 2x-1)
d, ( x^2 + 2xy + y^2 ) : x +y
a, (6x3 - 7x2 - x + 2) : (2x + 1)
b, (6x3 - 2x2 - 9x + 5) : (x - 1)
a) 6x+5/3x+3=5-4x/1-2x
b) 3/4(x-5)+15/50-2x^2=-7/6(x+5)
Giải các phương trình
1. (x-4)2-25=0
2. (2x-1)2+(2-x)(2x-1)=0
3. x2+6x+9=4x2
4. (2x-5)(x+11)=(5-2x)(2x+1)
5. 2x2+5x+3=0
1. Các hằng đẳng thức sau là đúng
a. x^2+6x+9/x^2+3=x+3/x+1
b. x^2-4/5x^2+13x+6=x+2/5x+3
c. x^2+5x+4/2x^2+x-3=x^2+3x+4/2x^2-5x+3
d. x^2-8x+16/16-x^2=4-x/4+x
2. P là đa thức nào để x^2+2x+1/P=x^2-1/4x^2-7x+3
a. P=4x^2+5x-2
b. P=4x^2+x-3
c. P=4x^2-x+3
d. P=4x^2+x+3
3. Đa thức Q trong đẳng thức 5(y-x)^2/5x^2-5xy=x-y/Q
a. x+y
b. 5(x+y)
c. 5(x-y)
d. x
4. Đa thức Q trong hằng đẳng x-2/2x^2+3=2x^2-4x/Q là:
a. 4x^2+16
b. 6x^2-4x
c. 4x^3+6x
d. khác
5. Phân thức 2x+1/2x-3 bằng phân thức:
a. 2x^2+x/2x-3
b. 2x^2+x/2x^2-3x
c. 2x+1/6x-9
d. Khác
B1: Làm phép chia:
a) (x^4+x^3+6x^2+5x+5):(x^2+x+1)
b) (x^4+x^3+2x^2+x+1):(x^2+x+1)
c) (3x^3+8x^2-x-10):(3x+5)
B2: Xác định hệ số a, sao cho:
a) (a^3x^3+3ax^2-6x-2a) chia het (x+1)
b) (2x^2-x+2-a) chia het (2x-1)
Tim x,
a,2x^4-6x^3+x^2+6x-3=0
b,x^3-9x^2+26x+24=0
c, P= 2x^4 - 4x^3 + 6x^2 - 4x + 5 biet rang x^2 - x=7
Giải phương trình:
a) \(\frac{x+3}{x-2}-\frac{2x+3}{x+2}=\frac{2x^2+5x+12}{x^2-4}\)
b) \(\frac{2x+5}{x-3}+\frac{x-1}{x+3}=\frac{x^2+6x+18}{x^2-9}\)