ĐKXĐ: \(x\ne0\)
Đặt \(x+\frac{1}{x}=a\Leftrightarrow x^2+\frac{1}{x^2}+2=a^2\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)
Phương trình trở thành:
\(4\left(a^2-2\right)-16a+23=0\)
\(\Leftrightarrow4a^2-16a+15=0\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{5}{2}\\a=\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{1}{x}=\frac{5}{2}\\x+\frac{1}{x}=\frac{3}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-5x+2=0\\2x^2-3x+2=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\)
đkxđ:x≠0
đặt t=x+\(\frac{1}{x}\)
ta có: t2=x2+\(\frac{1}{x^2}\)+2
⇒x2+\(\frac{1}{x^2}\)=t2-2
⇒phương trình trở thành:
4(t2-2)-16t+23=0
⇔4t2-16t+15=0
Δ=(-16)2-4.4.15=16
⇒phương trình có 2 nghiệm phân biệt
⇒t1=\(\frac{5}{2}\)⇒x+\(\frac{1}{x}\)=\(\frac{5}{2}\)⇒2x2-5x+2=0⇒x=2 hoặc x=\(\frac{1}{2}\)
t2=\(\frac{3}{2}\)⇒x+\(\frac{1}{x}\)=\(\frac{3}{2}\)⇒ 2x2 -3x +2 =0(vô nghiệm)
Vậy x=2 hoặc x=\(\frac{1}{2}\)
\(\frac{1}{2}\)\(\frac{1}{2}\)
tự kỉ :v dành cho mấy men ko biết lên đây xem
\(ĐK:x\ne0\)
đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(pt< =>4\left(t^2-2\right)-16t+23=0\)
\(< =>4t^2-8-16t+23=0\)
\(< =>t^2-16t+15=0\)
\(< =>\left[{}\begin{matrix}t=1\\t=15\end{matrix}\right.\)
=> ra giá trị x :)))
\(< =>\left[{}\begin{matrix}x+\frac{1}{x}=1\\x+\frac{1}{x}=15\end{matrix}\right.\)