Đặt \(\overrightarrow{v}=\left(a;b\right)\Rightarrow a^2+b^2=5\) (1)
Đường thẳng d nhận \(\left(3;-4\right)\) là 1 vtpt nên cũng nhận \(\overrightarrow{u}=\left(4;3\right)\) là 1 vtcp
\(sin\alpha=\dfrac{2}{\sqrt{5}}\Rightarrow cos\alpha=\sqrt{1-sin^2\alpha}=\dfrac{1}{\sqrt{5}}\)
\(\Rightarrow\dfrac{\left|a.4+b.3\right|}{\sqrt{a^2+b^2}.\sqrt{4^2+3^2}}=\dfrac{1}{\sqrt{5}}\Leftrightarrow\left|4a+3b\right|=5\) (2)
Từ (1) và (2) ta được hệ: \(\left\{{}\begin{matrix}a^2+b^2=5\\\left|4a+3b\right|=5\end{matrix}\right.\)
Phá trị tuyệt đối, sử dụng phép thế để giải hệ ta được:
\(\left(a;b\right)=\left(-2;1\right);\left(\dfrac{2}{5};-\dfrac{11}{5}\right);\left(2;-1\right);\left(-\dfrac{2}{5};\dfrac{11}{5}\right)\)
Tổng cộng có 4 vecto \(\overrightarrow{v}\) thỏa mãn
Tới đây bạn tự làm nốt phần tìm ảnh của d nhé