Chương 1: PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Julian Edward

cho đường thẳng \(d:3x+4y+5=0\)\(\overrightarrow{v}\left(1;-3\right)\). Qua phép tịnh tiến T theo \(\overrightarrow{v}\) đường thẳng d biến thành đường thẳng d'. Tính khoảng cách giữa hai đường thẳng d và d'

Nguyễn Việt Lâm
19 tháng 8 2020 lúc 0:53

d' là ảnh của d qua phép tịnh tiến nên pt d' có dạng \(3x+4y+c=0\)

Gọi \(A\left(0;-\frac{5}{4}\right)\) là 1 điểm thuộc d, A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow A'\in d'\)

Ta có \(A'\left(1;-\frac{17}{4}\right)\) mà A' thuộc d'

\(\Rightarrow3.1+4.\left(-\frac{17}{4}\right)+c=0\Rightarrow c=14\)

Phương trình d': \(3x+4y+14=0\)

\(d\left(d;d'\right)=d\left(A;d'\right)=\frac{\left|0+4\left(-\frac{17}{4}\right)+14\right|}{\sqrt{3^2+4^2}}=\frac{3}{5}\)

Julian Edward
19 tháng 8 2020 lúc 0:54

thanks bn nhiu nhesss!!!!