=>3x-2=0 hoặc 4x+5=0
=>x=2/3 hoặc x=-5/4
\(\left(3x-2\right)\left(4x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{-5}{4}\end{matrix}\right.\)
=>3x-2=0 hoặc 4x+5=0
=>x=2/3 hoặc x=-5/4
\(\left(3x-2\right)\left(4x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{-5}{4}\end{matrix}\right.\)
CÁC CAO NHÂN GIẢI GIÚP MÌNH VỚI
Giải các phương trình sau:
1) (3x 1)(7 4x) 0
2) 3x^2 + 6x = 0
3) (x 5)(x 1) (x 5)(4x 7) 0
4) x^2-4-(x-5)(2-x) = 0
5) X^3-1=x(x-1)
6) (2-x)(3x+3)(4x-1)=0
(3x-2)*(4x+5)=0
Bài 8: Giải các phương trình tích sau:
4. a) 3x2 + 2x – 1 = 0 b) x2 – 5x + 6 = 0
c) x2 – 3x + 2 = 0 d) 2x2 – 6x + 1 = 0
e) 4x2 – 12x + 5 = 0 f) 2x2 + 5x + 3 = 0
g) x2 + x – 2 = 0 h) x2 – 4x + 3 = 0
i) 2x2 + 5x – 3 = 0 j) x2 + 6x – 16 = 0
5. a) 3x2 + 12x – 66 = 0 b) 9x2 – 30x + 225 = 0
c) x2 + 3x – 10 = 0 d) 3x2 – 7x + 1 = 0
e) 3x2 – 7x + 8 = 0 f) 4x2 – 12x + 9 = 0
g) 3x2 + 7x + 2 = 0 h) x2 – 4x + 1 = 0
i) 2x2 – 6x + 1 = 0 j) 3x2 + 4x – 4 = 0
Bài 1 : Giải các phương trình sau:1) 5-(x-6)=4(3-2x) 2) (x-3)(x+4)-2(3x-2)=(x-4)2 3)3-x(1-3x)=5(1-2x) 4)9x-1=(3x+1)(4x+1) 5)2x(x-1)=x2-1 6)x2-5x2+6x=0 7)x2+4x-5=0 8)x3+9x2-4x-36=0
(3x-2)(4x+5)=0
1) (4x-10)(24+5x) =0
2) 0,5x(x-3)=(x-3)(2,5x-4)
3) 4x2-1=(2x+1)(3x-5)
4) (2-3x)(x+11)=(3x-2)(2-5x)
a) (x + 2)(3 – 4x) = x2 + 4x + 4
b) x(2x - 7) - 4x + 14 = 0
c) 3x - 15 = 2x(x - 5)
d) (2x + 1)(3x - 2) = (5x - 8)(2x + 1)
Giải phương trình :
a)(2x-5)^3-(3x-4)^x+(x+1)^3=0
b)(x-1)^3+(2x-3)^3+(3x-5)^3 - 3(x-1)(2x-3)(3x-5) = 0
c)(x^2+3x-4)^3 + (3x^2+7x+4)^3 = (4x^2+10x)^3