giải các hệ phương trình:
1, 2x+3|y-1|=5 và 3x+2y=7
2, |x+1|+|y-1|=5 và |x+1|-4y+4=0
3, (2x+1)/4-(y-3)/3=1/12 và (x+5)/2=(y+7)/3 -4
4, 1/x+1/y=1/12 và 8/x+15/y=1
5, 2/(x+2y) +1/(y+2x)=3 và 4/(x+2y) -3/(y+2x)=1
bài 1: giải các hệ phương trình
1)\(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)=\(\dfrac{1}{2}\)
x+y=9
2) \(\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{12}\)
\(\dfrac{x+5}{2}-\dfrac{y+7}{3}=-4\)
3)\(2|x|-y=3\)
\(|x|+y=3\)
4)\(2\left(x+y\right)+\sqrt{x+1}=4\)
\(\left(x+y\right)-3\sqrt{x+1}=-5\)
5) \(\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\)
\(\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\)
6)\(\dfrac{1}{x}+\dfrac{3}{2y+1}=2\)
\(\dfrac{2}{x}+\dfrac{4}{2y+1}=2\)
7) \(\dfrac{1}{x}+\dfrac{1}{y}=2\)
\(\dfrac{3}{x}-\dfrac{1}{y}=2\)
8)\(\dfrac{1}{x+2}+\dfrac{3}{2y-1}=4\)
\(\dfrac{4}{x+2}-\dfrac{1}{2y-1}=3\)
9)\(\dfrac{4}{x+y} +\dfrac{1}{y-1}=5\)
\(\dfrac{1}{x+y}-\dfrac{2}{y-1}=-1\)
10)\(\dfrac{7}{\sqrt{2x+3}}-\dfrac{4}{\sqrt{3}-y}=\dfrac{5}{3}\)
\(\dfrac{5}{\sqrt{2x+3}}+\dfrac{3}{\sqrt{3-y}}=\dfrac{13}{6}\)
11)\(\dfrac{3x}{x-1}-\dfrac{2}{y+2}=4\)
\(\dfrac{2x}{x-1}+\dfrac{1}{y+2}=5\)
12) \(\dfrac{7}{\sqrt{x}-7}-\dfrac{4}{\sqrt{y}+6}=\dfrac{5}{3}\)
\(\dfrac{5}{\sqrt{x}-7}+\dfrac{3}{\sqrt{y}+6}2\dfrac{1}{6}\)
13) \(3\sqrt{x-1}+2\sqrt{y}=13\)
\(2\sqrt{x-1}-\sqrt{y}=4\)
14) 6x + 6y = 5xy
\(\dfrac{4}{x}-\dfrac{3}{y}=1\)
Giải các hệ phương trình sau bằng cách đặt ẩn số phụ:
a) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{4}{5}\\\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{5}\end{matrix}\right.\);
b) \(\left\{{}\begin{matrix}\dfrac{15}{x}-\dfrac{7}{y}=9\\\dfrac{4}{x}+\dfrac{9}{y}=35\end{matrix}\right.\);
c) \(\left\{{}\begin{matrix}\dfrac{1}{x+y}+\dfrac{1}{x-y}=\dfrac{5}{8}\\\dfrac{1}{x+y}-\dfrac{1}{x-y}=-\dfrac{3}{8}\end{matrix}\right.\);
d) \(\left\{{}\begin{matrix}\dfrac{4}{2x-2y}+\dfrac{5}{3x+y}=-2\\\dfrac{3}{3x+y}-\dfrac{5}{2x-3y}=21\end{matrix}\right.\);
e) \(\left\{{}\begin{matrix}\dfrac{7}{x-y+2}-\dfrac{5}{x+y-1}=4,5\\\dfrac{3}{x-y+2}+\dfrac{2}{x+y-1}=4\end{matrix}\right.\).
bài 2: Tính hai cạnh góc vuông của một tâm giác vuông có độ dài cạnh huyền = 37m và diện tích = 210\(m^2\)
bài 3: giải hệ pt sau:
a. \(\left\{{}\begin{matrix}\frac{x-y}{7}+\frac{2x+y}{17}=7\\\frac{4x+y}{5}+\frac{y-7}{19}=15\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}5\left(x+2y\right)-3\left(x-y\right)=99\\x-y=7\left(x-y\right)+3y=17\end{matrix}\right.\)
c. \(\frac{x}{x-1}-\frac{2\sqrt{2}}{1-x}-\frac{6+\sqrt{2}}{x^2-1}\)= 0
d. \(\left\{{}\begin{matrix}\frac{2}{x+3}-\frac{5}{y-2}=1\\\frac{x+4}{x+3}+\frac{y}{y-2}=2\end{matrix}\right.\)
e. \(\left\{{}\begin{matrix}\frac{x-y}{7}+\frac{2x+y}{17}=7\\\frac{4+y}{5}+\frac{y-7}{19}=15\end{matrix}\right.\)
1.Giải hệ phương trình:
a.\(\left\{{}\begin{matrix}2\sqrt{2}x+y=2\sqrt{2}\\7x-3y=7\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}7x+y=-\frac{1}{7}\\-\frac{4}{3}x-2y=1\frac{1}{3}\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}2\sqrt{5}x+3y=\sqrt{2}\\\sqrt{5}x-y=3\sqrt{2}\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y}=-5\\\frac{3}{x}-\frac{4}{y}=1\end{matrix}\right.\)
e.\(\left\{{}\begin{matrix}-\frac{5}{3x+1}+\frac{7}{2x+1}=\frac{5}{7}\\\frac{1}{3x+1}-\frac{1}{2y-3}=\frac{2}{7}\\\end{matrix}\right.\)
g.\(\left\{{}\begin{matrix}2x^2+5y^2=129\\-3x^2+y^2=13\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{1}{x+y}-\dfrac{2}{x-y}=2\\\dfrac{5}{x+y}-\dfrac{4}{x-y}=3\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}4\left(2x-y+3\right)-3\left(x-2y+3\right)=48\\3\left(3x-4y+3\right)+4\left(4x-2y-9\right)=48\end{matrix}\right.\)
\(\left\{{}\begin{matrix}6\left(x+y\right)=8+2x-3y\\5\left(y-x\right)=5+3x+2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}-2\left(2x+1\right)+1,5=3\left(y-2\right)-6x\\11,5-4\left(3-x\right)=2y-\left(5-x\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{8x-5y-3}{7}+\dfrac{11y-4x-7}{5}=12\\\dfrac{9x+4y-13}{5}-\dfrac{3\left(x-2\right)}{4}=15\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2\sqrt{3}x-\sqrt{5}y=2\sqrt{6}-\sqrt{15}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
Giải hệ phương trình :
\(\left\{{}\begin{matrix}x+\dfrac{1}{x}+y-\dfrac{1}{y}=3\\x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}=5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}6.\left(x+y\right)=8+2x-3y\\5.\left(y-x\right)=5+3x+2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x-1\right).\left(y-2\right)=\left(x+1\right).\left(y-3\right)\\\left(x-5\right).\left(y+4\right)=\left(x-4\right).\left(y+1\right)\end{matrix}\right.\)
Giải hệ phương trình sau:
a. \(\left\{{}\begin{matrix}\dfrac{5}{\sqrt{x-2}}+\sqrt{3-y}=8\\\dfrac{2}{\sqrt{x-2}}+3\sqrt{3-y}=11\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}\dfrac{5}{\sqrt{x}-2}+\sqrt{3-y}=8\\\dfrac{2}{\sqrt{x}-2}+3\sqrt{3-y}=11\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}3\sqrt{2x-1}+\dfrac{4}{2-\sqrt{y}}=10\\5\sqrt{2x-1}-\dfrac{8}{2-\sqrt{y}}=2\end{matrix}\right.\)