Giải hệ phương trình
\(\left\{{}\begin{matrix}4\left(2x-y+3\right)-3\left(x-2y+3\right)=48\\3\left(3x-4y+3\right)+4\left(4x-2y-9\right)=48\end{matrix}\right.\)
\(\left\{{}\begin{matrix}6\left(x+y\right)=8+2x-3y\\5\left(y-x\right)=5+3x+2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}-2\left(2x+1\right)+1,5=3\left(y-2\right)-6x\\11,5-4\left(3-x\right)=2y-\left(5-x\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{8x-5y-3}{7}+\dfrac{11y-4x-7}{5}=12\\\dfrac{9x+4y-13}{5}-\dfrac{3\left(x-2\right)}{4}=15\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2\sqrt{3}x-\sqrt{5}y=2\sqrt{6}-\sqrt{15}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
Giải các hệ phương trình :
a) \(\left\{{}\begin{matrix}\left(x-3\right)\left(2y+5\right)=\left(2x+7\right)\left(y-1\right)\\\left(4x+1\right)\left(3y-6\right)=\left(6x-1\right)\left(2y+3\right)\end{matrix}\right.\);
b) \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)\left(2xy\right)\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\).
a) \(\left\{{}\begin{matrix}2x+4=0\\4x+2y=-3\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}\left(x-15\right).\left(y+2\right)=x.y\\\left(x+15\right).\left(y-1\right)=x.y\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}2x+4=y\\x+2y=-3\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y}=5\\\frac{2}{x}+\frac{5}{y}=7\end{matrix}\right.\) tính bằng phương pháp cộng dại số
Giải hệ phương trình sau bằng phương pháp thế
a)
\(\left\{{}\begin{matrix}\sqrt{5}+2)x+y=3-\sqrt{5}\\-x+2y=6-2\sqrt{5}\end{matrix}\right.\)
b)
\(\left\{{}\begin{matrix}5\left(x+2y\right)=3x-1\\2x+4=3\left(x-5y\right)-12\end{matrix}\right.\)
Bµi 1: A)\(\left\{{}\begin{matrix}X=35.\left(Y+2\right)\\X=50.\left(Y-1\right)\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}Y=2X-3\\Y=X-1\end{matrix}\right.\)
C) \(\left\{{}\begin{matrix}\left(X+14\right).\left(Y-2\right)=X.Y\\\left(X-4\right).\left(Y+1\right)=X.Y\end{matrix}\right.\)
D)\(\left\{{}\begin{matrix}Y=\frac{6-X}{4}\\Y=\frac{4X-5}{3}\end{matrix}\right.\)GIẢI BÀI 1 BẰNG PHƯƠNG PHAP THẾ
Giải hệ phương trình sau bằng phương pháp thế
1) \(\left\{{}\begin{matrix}x-2y=4\\-2x+5y=-3\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}2x+y=10\\5x-3y=3\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}x+2y=4\\-3x+y=7\end{matrix}\right.\)
Giải hệ phương trình
a)\(\left\{{}\begin{matrix}6x^2-3xy+x=1-y\\x^2+y^2=1\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}\left|x+1\right|+\left|y-1\right|=5\\\left|x+1\right|-4y+4=0\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}2x^2-2x+xy-y=0\\x^2-3xy+4=0\end{matrix}\right.\)
1.Giải hệ phương trình:
a.\(\left\{{}\begin{matrix}2\sqrt{2}x+y=2\sqrt{2}\\7x-3y=7\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}7x+y=-\frac{1}{7}\\-\frac{4}{3}x-2y=1\frac{1}{3}\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}2\sqrt{5}x+3y=\sqrt{2}\\\sqrt{5}x-y=3\sqrt{2}\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y}=-5\\\frac{3}{x}-\frac{4}{y}=1\end{matrix}\right.\)
e.\(\left\{{}\begin{matrix}-\frac{5}{3x+1}+\frac{7}{2x+1}=\frac{5}{7}\\\frac{1}{3x+1}-\frac{1}{2y-3}=\frac{2}{7}\\\end{matrix}\right.\)
g.\(\left\{{}\begin{matrix}2x^2+5y^2=129\\-3x^2+y^2=13\end{matrix}\right.\)
giải hệ PT sau
\(\left\{{}\begin{matrix}x+2y=1\\-3x-y=-2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}4x-5y=9\\7x+y=6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}8x+2y=13\\x+y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}5x-3y=1\\2x+y=7\end{matrix}\right.\)