1, Cho pt: x2 - 5x + m - 4 = 0
a) Tìm m để pt có 2 nghiệm trái dấu.
b) Tìm m để pt có 2 nghiệm dương phân biệt.
c) Tìm m để pt có 2 nghiệm phân biệt x1, x2 thỏa mãn: (x12 - 4x1 + m - 2)x1 + x2(x2 + 2) = 23.
2, Cho pt: x2 + 6x + m + 7 = 0
a) Tìm m để pt có 2 nghiệm âm phân biệt.
b) Tìm m để pt chỉ có 1 nghiệm.
c) Tìm m để pt có 2 nghiệm phân biệt x1, x2 thỏa mãn: (x22 + 7x2 + m + 4)x2 + x1.(x1 - 3) = 44.
3, Cho pt: x2 - mx + m - 1 = 0
a) Tìm m để pt có 2 nghiệm khác nhau.
b) Tìm m để pt có 2 nghiệm phân biệt và cùng dấu. Khi đó pt có 2 nghiệm cùng dấu gì?
c) Tìm m để pt có 2 nghiệm x1, x2 thỏa mãn: [ x12 - (m + 1)x1 + m + 4].[ x22 - (m+1).x2 + m + 4] = -4
Cho pt (m+1)x2-2(m-1)x+m-2=0
a, Xác định m để pt có 2 nghiệm phân biệt
b, Xác định m để pt có một nghiệm bằng 2. Tìm nghiệm kia
c, Xác định m để pt có 2 nghiệm x1; x2 thỏa mãn 1/x1 + 1/x2 = 7/4; 1/x1 + 1/x2 = 1; x12+x22=2
d, Xác định m để pt có 2 nghiệm thỏa mãn 3(x1+x2)=5x1x2
Cho pt x²-2(m+1)+6m-4=0 (1)(với m là tham số)
a, chứng minh rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
b, Tìm m để pt (1) có 2 nghiệm x1;x2 thỏa mãn (2m−2)x1+x22−4x2=4
Cho pt x\(^2\)-2-2(m-1)x-3-m=0Chứng tỏ rằng pt có nghiệm x1,x2 với mọi m tìm m để pt có 2 nghiệm trái dâu tìm m để pt có 2 nghiệm cùng âm tìm m để nghiệm số x1,x2 của pt thỏa mãn x1\(^2\)+x2≥10tìm hệ thứ liên hệ giữa x1,x2 không phụ thuộc vào m hãy biểu thị x1 qua x2
cho pt: x2 -2(m+4)x+m2=0
a) giải phương trình với m=8
b)tìm m để pt có 2 nghiệm thỏa mãn: x12+x22 = -2
c)tìm m để 1 nghiệm là x = -2, tìm nghiệm còn lại
d)tìm m để pt có nghiệm kép! tìm nghiệm kép đó
cho pt x2-2(m+1)x+m-4=0
a, Giải pt khi m= -5
b, CMR pt luôn có nghiệm x1, x2 với mọi m
c, Tìm m để pt có 2 nghiệm trái dấu
d, Tìm m để pt có 2 nghiệm dương
e, CMR biểu thức A=x1(1-x2)+x2(1-x1) không phụ thuộc m
f, Tính giá trị của biểu thức x1-x2
Cho phương trình: x2 - 3x - m2 + m + 2 = 0 (1)
Tìm m để pt(1) có 2 nghiệm phân biệt x1,x2 sao cho: x12 + x22 = 5
Cho PT x2 - mx + m - 2 = 0. Tìm m để PT trên có 2 nghiệm x1, x2 sao cho biểu thức P = x1x2 - x12 - x22 đạt GTNN
Cho x1, x2 là nghiệm của pt x^2 -(m-1)x-2=0. Tìm m để pt có 2 nghiệm thỏa mãn x1/x2=x2^2-3/x1^2-3