\(\text{Δ}=\left(2m\right)^2-4\cdot2\cdot\left(m^2-2\right)\)
\(=4m^2-8m^2+16=-4m^2+16\)
Để phương trình có hai nghiệm thì (m-2)(m+2)<0
=>-2<m<2
Theo đề, ta có:
\(\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2-1< 0\)
\(\Leftrightarrow\left(-m\right)^2-\dfrac{5}{2}\left(m^2-2\right)-1< 0\)
\(\Leftrightarrow m^2-\dfrac{5}{2}m^2+5-1< 0\)
\(\Leftrightarrow m^2\cdot\dfrac{-3}{2}< -4\)
\(\Leftrightarrow m^2>6\)
\(\Leftrightarrow\left[{}\begin{matrix}m>\sqrt{6}\\m< -\sqrt{6}\end{matrix}\right.\)