\(\left(2x-5\right)^2-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(2x-5-x-2\right)\left(2x-5+x+2\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\3x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)
\(\left(2x-5\right)^2-\left(x+2\right)^2=0\)
=> \(\left(2x-5-x-2\right)\left(2x-5+x+2\right)=0\)
=>\(\left(x-7\right)\left(3x-3\right)=0\)
=> \(x-7=0=>x=7\)
hoặc \(3x-3=0=>x=1\)
`(2x-5)^2-(x-2)^2=0`
`<=>(2x-5)^2=(x-2)^2`
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=x-2\\2x-5=-x+2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{7}{3}\end{matrix}\right.\)
Vậy `S={3 ;7/3}`.
Câu trước sai đề.
`(2x-5)^2-(x+2)^2=0`
`<=> (2x-5)^2=(x+2)^2`
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=x+2\\2x-5=-x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)
`S={7;1}`.