\(\Leftrightarrow2x^2+2x-3x-3-2x^2+4x-2=2\left(x^2+x-2\right)\)
\(\Leftrightarrow2x^2+2x-4=3x-5\)
=>2x2-x+1=0
hay \(x\in\varnothing\)
\(\Leftrightarrow2x^2+2x-3x-3-2x^2+4x-2=2\left(x^2+x-2\right)\)
\(\Leftrightarrow2x^2+2x-4=3x-5\)
=>2x2-x+1=0
hay \(x\in\varnothing\)
Dùng biểu thức liên hợp:
a)\(\sqrt{2x-1}-\sqrt{x+1}=2x-4\). f)\(3\sqrt{x+1}+3\sqrt{x-1}=4x+1\).
b)\(\sqrt{2x^2-3x+10}+\sqrt{2x^2-5x+4}=x+3\).
c)\(\sqrt{x+2}-\sqrt{3-x}=x^2-6x+9\).
d)\(\sqrt{x}-\sqrt{x-1}=\sqrt{x+8}-\sqrt{x+3}.\)
e)\(\sqrt{x^2+x}-\sqrt{x^2-3}=\sqrt{2x^2-x-2}-\sqrt{2x^2+1}\)
1, \(\frac{x}{2}-\frac{3-x}{3}=\frac{2x+2}{5}\)
2,1-\(\frac{3-x}{3}=\frac{2x+2}{5}-\frac{2-x}{4}\)
3,\(\frac{2}{3}x+1=x-5\)
4, 2x-x2 =0
5,\(\frac{4x}{x+1}+\frac{x+3}{x}=6\)
6, \(\frac{x-1}{x-3}+\frac{2x+2}{x-2}=8\)
7, \(\sqrt{x-1}=\sqrt{2}\)
8, \(\sqrt{2x-1}=\sqrt{x}-4\)
Giải pt : a) \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
b) \(\left(x-1\right)\sqrt{x^2+5}+x=x^2+1\)
c)\(\sqrt{x+2}+2x-10=\sqrt{2x-3}\)
d)\(\sqrt{2x-3}-\sqrt{x}=2x-6\)
e) \(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)
Giải phương trình
√x+3 -√x-1 = √2x+2
√x2+x+25 -√x2+x+9 =2
5√x3+1 =2(x2+2)
∛x+7 + ∛1-x =2
x3 - 2∛2x-1 +1 =0
Giải phương trình:
1, \(x^2\sqrt{x}+\left(x-5\right)^2\sqrt{5-x}=11\left(\sqrt{x}+\sqrt{5-x}\right)\)
2, \(2x+1+x\sqrt{x^2+2}+\left(x+1\right)\sqrt{x^2+2x+3}=0\)
3, \(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2+\sqrt{2x-5}}=2\sqrt{2}\)
4, \(\sqrt{x^2-\dfrac{1}{4x}}+\sqrt{x-\dfrac{1}{4x}}=x\)
5, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-1-20}=5\sqrt{x+1}\)
1.a) Rút gọn: \(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\)
b) \(\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\)
2. Giải phương trình:
a) \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
b) \(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+21x-11}\)
c) \(x^2+2015x-2014=2\sqrt{2017x-2016}\)
d) \(\sqrt{\left(1+x^2\right)^3}-4x^3=1-3x^4\)
1. \(x^4-x^2+3x+5=2\sqrt{x+2}\)
2. \(\sqrt{x^2+x}+\sqrt{x-x^2}=2x+2\)
3. \(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
4. \(\sqrt{2x^2-1}+\sqrt{x^2-3x+2}=\sqrt{2x^2+2x+3}+\sqrt{x^2-x+2}\)
Giải các phương trình sau:
a) \(x\sqrt{x-1}+\left(2x+1\right)\sqrt{x+2}+x^3-4x^2+x-6=0\)
b) \(\left(2x+3\right)\sqrt{2x-1}+x\sqrt{x+3}+x^2-5x-3=0\)
c) \(x\sqrt{2x+3}+\left(x+1\right)\sqrt{4x-1}+2\left(x^2-x-1\right)=0\)
giải phương trình :a,\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+3-4\sqrt{x-1}}=1\)
b,\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
c,\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
d, \(3+\sqrt{x+2\sqrt{x-1}}=2\sqrt{x-2\sqrt{x-1}}\)