Đề số 1

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
kietdeptrai

2.Cho tam giác ABC vuông tại A, đường cao AH . Biết AB = 6cm AC = 8cm . a) Tính BC; BH và số đo góc C (số đo góc làm tròn đến độ) b) Gọi E, F là hình chiếu của H trên AB, AC . Chứng minh AE.BE+AF. CF = A * H ^ 2 c) Gọi I là trung điểm của BC, AI cắt EF tại O. Chứng minh: 1/(O * A ^ 2) = 1/(A * E ^ 2) + 1/(A * F ^ 2)

Nguyễn Lê Phước Thịnh
3 tháng 12 2023 lúc 13:25

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot10=6^2=36\)

=>BH=36/10=3,6(cm)

XétΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

b: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>\(HE^2+HF^2=AH^2\)

Xét ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot BE=HE^2\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot FC=HF^2\)

\(AE\cdot BE+AF\cdot FC\)

\(=HE^2+HF^2\)

\(=AH^2\)

c: ΔABC vuông tại A

mà AI là đường trung tuyến

nên AI=BI=CI

IA=IC

=>ΔIAC cân tại I

=>\(\widehat{IAC}=\widehat{ICA}\)

=>\(\widehat{OAF}=\widehat{ACB}\)

AEHF là hình chữ nhật

=>\(\widehat{AFE}=\widehat{AHE}\)

mà \(\widehat{AHE}=\widehat{ABH}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{AFE}=\widehat{ABH}\)

=>\(\widehat{AFO}=\widehat{ABC}\)

\(\widehat{AFO}+\widehat{FAO}=\widehat{ABC}+\widehat{ACB}=90^0\)

=>AO\(\perp\)OF tại O

=>AI\(\perp\)FE tại O

Xét ΔAEF vuông tại A có AO là đường cao

nên \(\dfrac{1}{AO^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)


Các câu hỏi tương tự
Vũ Diệu Ngọc
Xem chi tiết
Vũ Diệu Ngọc
Xem chi tiết
Phat Nguyen
Xem chi tiết
Cao Mỹ Ngọc Đoàn
Xem chi tiết
Châu Khánh
Xem chi tiết
nguyễn đan
Xem chi tiết
Hân Ngọc
Xem chi tiết
Tuấn Lê
Xem chi tiết
admin tvv
Xem chi tiết