Cho A= 455/1 + 454/2 + 453/3 +...+ 2/454 + 1/455. So sánh A với 2019
Câu hỏi đây ai giúp mình với ạ!
Viết tắt A = 2^2 + 2^2 + 2^3 + ... + 2^100 dưới dạng một lúy thừa của 2 .
CMR: \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}=2\)
Helppp!!!
a, Chứng tỏ rằng: \(\dfrac{12n+1}{30n+2}\) là phân số tối giản.
b, Chứng minh rằng: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)
A = \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.\frac{24}{5^2}...\frac{899}{30^2}\)
ai nhanh dc tick nhé
Chứng tỏ :
A = 1/3^2 + 1/4^2 + 1/5^2 + ... + 1/100 < 1/2
Chứng minh rằng \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)
Bài 1 : Tính
A = (- 6,17 + 3/5/9 - 2/36/97 ) . (1/3 - 0,25 - 1/12 )
B = (- 3,2 ) . -15/64 + ( 0,8 - 2/4/15 ) : 3/2/3
Bài 2 : Chứng minh :
D = 1/22 + 1/23 + .... + 1/102 < 1
B=(3^4-1^2)mủ 3 : (1-2^3-1^2) mũ 2