\(2cos^2x+3cosx-5=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\dfrac{5}{2}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x=k2\pi\)
\(2cos^2x+3cosx-5=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\dfrac{5}{2}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x=k2\pi\)
Giải phương trình lượng giác sau
1) 2 cos 2x -\(\sqrt{3}\) = 0
2)\(\sqrt{3}\) tan x + 1 = 0
3) 2 cos2x = 1
4) 6 sin2 x- 13 sin x + 5 = 0
5) 5 cos 2x + 6 cos x + 1 = 0
6 ) 2 cos 2 2x - 3 cos 2x + 1 = 0
7) tan 2 x + ( 1 - \(\sqrt{3}\)) tan x - \(\sqrt{3}\) = 0
8) cos 6x + 2 sin 3x + 3 = 0
9) cos 2x - 4 cos x - 5 = 0
10 ) 3 cos 2 x = 2 sin 2 x + 4 sin x
11) cos 2x + sin2x + 2 cos x + 1 = 0
12) cos 4x + sin 4x + sin 2x = \(\dfrac{5}{2}\)
Giải các phương trình lượng giác:
a) \(sin4x-cos\left(x+\dfrac{\pi}{6}\right)=0\)
b) \(cos\left(x+\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\)
c) \(cos4x=cos\dfrac{5\pi}{12}\)
d) \(cos^2x=1\)
a, 3 cos2x + 5 sinx - 5 = 0
b, 2 cos2 - sinx - cosx - 2 sin2x -1 = 0
a.3 cos x-3 + sin 2x(1-cosx)=0
b.cos 2x+sin x+cos x=0
c.sin 4x-2 cos2x=0
d.(3sin x-2)(cos x-1)=0
Giải phương trình
a) cos ( x+ 15o) = 1
b) 2 cos ( 3x + \(\frac{\pi}{3}\)) - \(\sqrt{2}\) = 0
c) 3 cos ( 4x - \(\frac{\pi}{4}\)) + \(\sqrt{2}\) = 0
d) cos 4x = cos( \(x+\frac{\pi}{3}\))
e) cos 5x + cos 3x = 0
Giúp mình giải gấp các pt bậc nhất theo sin x và cos x dạng a sin x +b cos x=c 1:sin(x+pi/6)+cos(x+pi/6)= căn6/2 2: ( căn 3-1) sinx-(căn3+1) cos x + căn 3-1=0 3: căn 3 sin 2x+sin(pi/2+2x)=1
Giải PT
a) 4sin (3x + \(\frac{\pi}{3}\)) - 2 = 0
b) 4sin ( 4x + 1) -1 = 0
c) sin ( x + \(\frac{x}{4}\)) -1 = 0
d) 2sin ( 2x + 70o) + 1 = 0
e) sin x . cos ( 2x - 3 ) = 0
f) cos 2x -cos 4x = 0
g) cos ( sin 3x) = 1
giải phương trình \(\cos^2x-2\cos x-3=0\)
Giải các phương trình sau:
1. tan2x+3= (1+√2 sin x)(tan x+ √2 cos x)
2. (1- cos x. cos2x )/ sin2x - 1/ cos x= 4 sin2x - sin x-1
3. sin3x + 2 cos3x+ cos2x - 2sin2x - 2sinx-1=0