\(=\dfrac{1}{2}-\left(\dfrac{1}{3\cdot7}+\dfrac{1}{7\cdot11}+...+\dfrac{1}{23\cdot27}\right)\)
\(=\dfrac{1}{2}-\dfrac{1}{4}\left(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+...+\dfrac{4}{23\cdot27}\right)\)
\(=\dfrac{1}{2}-\dfrac{1}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{23}-\dfrac{1}{27}\right)\)
\(=\dfrac{1}{2}-\dfrac{1}{4}\cdot\dfrac{9-1}{27}\)
\(=\dfrac{1}{2}-\dfrac{1}{4}\cdot\dfrac{8}{27}=\dfrac{1}{2}-\dfrac{2}{27}=\dfrac{27-4}{54}=\dfrac{23}{54}\)