Câu 2:
Tọa độ điểm A là:
\(\left\{{}\begin{matrix}y=0\\2x+4=0\end{matrix}\right.\Leftrightarrow A\left(-2;0\right)\)
Tọa độ điểm B là:
\(\left\{{}\begin{matrix}x=0\\y=2\cdot0+4=4\end{matrix}\right.\)
=>B(0;4)
Tọa độ điểm C là:
\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x+1=0\end{matrix}\right.\Leftrightarrow C\left(2;0\right)\)
Tọa độ điểm D là:
\(\left\{{}\begin{matrix}x=0\\y=\dfrac{-1}{2}\cdot0+1=1\end{matrix}\right.\Leftrightarrow D\left(0;1\right)\)
Tọa độ điểm M là:
\(\left\{{}\begin{matrix}2x+4=-\dfrac{1}{2}x+1\\y=2x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1,2\\y=1,6\end{matrix}\right.\)
M(-1,2;1,6); A(-2;0); B(0,4); C(2;0); D(0;1)
\(\overrightarrow{MA}=\left(-0.8;-1.6\right)\)
\(\overrightarrow{MC}=\left(3.2;-1.6\right)\)
Vì \(\overrightarrow{MA}\cdot\overrightarrow{MC}=0\)
nên ΔMAC vuông tại M
b: \(MA=\sqrt{\left(-0.8\right)^2+\left(-1.6\right)^2}=\dfrac{4}{5}\sqrt{5}\)
\(MC=\sqrt{3.2^2+1.6^2}=\dfrac{8}{5}\sqrt{5}\)
\(S_{MAC}=\dfrac{4}{5}\sqrt{5}\cdot\dfrac{8}{5}\sqrt{5}:2=3.2\)