Bài 1:
a) \(\left(x-3\right)^2+\left(y-1\right)^2+5\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
Do đó: \(\left(x-3\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-3\right)^2+\left(y-1\right)^2+5\ge5\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-3\right)^2+\left(y-1\right)^2+5\)là 5 khi x=3 và y=1
b) \(\left|x-3\right|+x^2+y^2+1\)
Ta có: \(\left|x-3\right|\ge0\forall x\)
\(x^2\ge0\forall x\)
\(y^2\ge0\forall y\)
Do đó: \(\left|x-3\right|+x^2+y^2\ge0\forall x,y\)
\(\Rightarrow\left|x-3\right|+x^2+y^2+1\ge1\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left|x-3\right|=0\\x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\x=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=0\\y=0\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(\left|x-3\right|+x^2+y^2+1\) là 1 khi x=3; x=0 và y=0
c) \(\left|x-100\right|+\left(x-y\right)^2+100\)
Ta có: \(\left|x-100\right|\ge0\forall x\)
\(\left(x-y\right)^2\ge0\forall x,y\)
Do đó: \(\left|x-100\right|+\left(x-y\right)^2\ge0\forall x,y\)
\(\Rightarrow\left|x-100\right|+\left(x-y\right)^2+100\ge100\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left|x-100\right|=0\\\left(x-y\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-100=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=100\\100-y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=100\\y=100\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(\left|x-100\right|+\left(x-y\right)^2+100\) là 100 khi x=100 và y=100
Bài 2:
b) \(-125-\left(x-4\right)^2-\left(y-5\right)^2\)
Ta có: \(-125-\left(x-4\right)^2-\left(y-5\right)^2=-\left(x-4\right)^2-\left(y-5\right)^2-125\)
Ta có: \(\left(x-4\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-4\right)^2\le0\forall x\)
Ta có: \(\left(y-5\right)^2\ge0\forall y\)
\(\Rightarrow-\left(y-5\right)^2\le0\forall y\)
Do đó: \(-\left(x-4\right)^2-\left(y-5\right)^2\le0\forall x,y\)
\(\Rightarrow-\left(x-4\right)^2-\left(y-5\right)^2-125\le-125\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(y-5\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\)
Vậy: Giá trị lớn nhất của biểu thức \(-125-\left(x-4\right)^2-\left(y-5\right)^2\) là -125 khi x=4 và y=5