Bài 2:
\(\left(\dfrac{2}{5}\right)^x>\left(\dfrac{5}{2}\right)^{-3}.\left(\dfrac{-2}{5}\right)^2\)
\(\Rightarrow\left(\dfrac{2}{5}\right)^x>\left(\dfrac{2}{5}\right)^3.\left(\dfrac{2}{5}\right)^2\)
\(\Rightarrow\left(\dfrac{2}{5}\right)^x>\left(\dfrac{2}{5}\right)^5\)
Vì \(\dfrac{2}{5}\ne\pm1;\dfrac{2}{5}\ne0\) nên \(x>5\)
Vậy \(x>5\) thoả mãn yêu cầu đề bài.
Chúc bạn học tốt!!!
Bài 1:
\(C=\left(\dfrac{1}{2^2-1}\right)\left(\dfrac{1}{3^2-1}\right).....\left(\dfrac{1}{100^2-1}\right)\)
\(C=\left(\dfrac{1}{\left(2-1\right)\left(2+1\right)}\right)\left(\dfrac{1}{\left(3-1\right)\left(3+1\right)}\right).....\left(\dfrac{1}{\left(100-1\right)\left(100+1\right)}\right)\)
\(C=\dfrac{1}{1.3}\dfrac{1}{2.4}.....\dfrac{1}{99.101}=\dfrac{1}{101!}\)
Chúc bạn học tốt!!!
Ace Legona, Hà Linh, Linh Nguyễn, Phạm Hoàng Giang, Nguyễn Thanh Hằng, Nguyễn Huy Tú, Akai Haruma, Nguyễn Thị Hồng Nhung, Toshiro Kiyoshi, DƯƠNG PHAN KHÁNH DƯƠNG, Nguyễn Đình Dũng ,...
Bài1:
\(C=\left(\dfrac{1}{2^2-1}\right)\left(\dfrac{1}{3^2-1}\right).....\left(\dfrac{1}{100^2-1}\right)\\ =\left(\dfrac{1}{\left(2-1\right)\left(2+1\right)}.\dfrac{1}{\left(3-1\right)\left(3+1\right)}.....\dfrac{1}{\left(100-1\right)\left(100+1\right)}\right)\\ =\dfrac{1}{1.3}.\dfrac{1}{2.4}.....\dfrac{1}{99.101}\\ =\dfrac{1}{99!.101!}\)
Bài2:
\(\left(\dfrac{2}{5}\right)^x>\left(\dfrac{5}{2}\right)^{-3}.\left(-\dfrac{2}{5}\right)^2\\ \Leftrightarrow\left(\dfrac{2}{5}\right)^x>\left(\dfrac{2}{5}\right)^3.\left(\dfrac{2}{5}\right)^2\\ \Leftrightarrow\left(\dfrac{2}{5}\right)^x>\left(\dfrac{2}{5}\right)^5\\ \Leftrightarrow x< 5\)
Do \(\dfrac{2}{5}\ne0;\dfrac{2}{5}\ne\pm1\)
Vậy x<5
Toshiro Kiyoshi giải sai :))