a,
\(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3+1-x^3+1=2\)
b, \(x\left(x-4\right)\left(x+4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x\left(x^2-16\right)-\left(x^4-1\right)\)
\(=x^3-16x-x^4+1\)
a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
= \(x^3-x^2+x+x^2-x+1-\left(x^3+x^2+x-x^2-x-1\right)\)
= \(x^3-x^2+x+x^2-x+1-x^3-x^2-x+x^2+x+1\)
= \(2\)
b) \(x\left(x-4\right)\left(x+4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
= \(x\left(x^2-16\right)-\left(x^4-1\right)\) = \(x^3-16x-x^4+1\)
= \(-x^4+x^3-16x+1\)
a,
(x+1)(x2−x+1)−(x−1)(x2+x+1)(x+1)(x2−x+1)−(x−1)(x2+x+1)
=x3+1−x3+1=2=x3+1−x3+1=2
b, x(x−4)(x+4)−(x2+1)(x2−1)x(x−4)(x+4)−(x2+1)(x2−1)
=x(x2−16)−(x4−1)=x(x2−16)−(x4−1)
=x3−16x−x4+1