Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kathy Nguyễn

Phân tích đa thức thành nhân tử:

1). (x - 3)(x - 1) - 3(x - 3)

2). (6x + 3) - (2x - 5)(2x + 1)

3). (x - 1)(2x + 1) + 3(x - 1)(x + 2)(2x + 1)

4). (3x - 2)(4x - 3) - (2 - 3x)(x - 1) - 2(3x - 2)(x + 1)

5). \(\left(x-5\right)^2+\left(x+5\right)\left(x-5\right)-\left(5-x\right)\left(2x+1\right)\)

6). (a - b)(a + 2ab) - (b - a)(2a - b) - (a - b)(a + 3b)

T.Thùy Ninh
28 tháng 6 2017 lúc 13:47

\(1,\left(x-3\right)\left(x-1\right)-3\left(x-3\right)\)

\(=\left(x-3\right)\left(x-1-3\right)\)

\(=\left(x-3\right)\left(x-4\right)\)

\(2,6x+3-\left(2x-5\right)\left(2x+1\right)\)

\(=3\left(2x+1\right)-\left(2x-5\right)\left(2x+1\right)\)

\(=\left(2x+1\right)\left(3-2x+5\right)\)

\(=\left(2x+1\right)\left(-2-2x\right)\)

\(3,\left(x-1\right)\left(2x+1\right)+3\left(x-1\right)\left(x+2\right)\left(2x+1\right)\)\(=\left(x-1\right)\left(2x+1\right)\left(1+3x+6\right)\)

\(=\left(x-1\right)\left(2x+1\right)\left(3x+7\right)\)

\(4,\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)

\(=\left(3x-2\right)\left(3x-6\right)\)

\(5,\left(x-5\right)^2+\left(x+5\right)\left(x-5\right)-\left(5-x\right)\left(2x+1\right)\)\(=\left(x-5\right)^2+\left(x+5\right)\left(x-5\right)+\left(x-5\right)\left(2x+1\right)\)\(=\left(x-5\right)\left(x-5+x+5+2x+1\right)\)

\(=\left(x-5\right)\left(4x+1\right)\)

6, Tương tự


Các câu hỏi tương tự
Minh Hiền Tạ Phạm
Xem chi tiết
Nguyễn Hoàng Linh
Xem chi tiết
Phạm Thị Phương Thảo
Xem chi tiết
Phạm Thị Phương Thảo
Xem chi tiết
đinh trần xuân hoa
Xem chi tiết
Uyên cute
Xem chi tiết
-Nhân -
Xem chi tiết
Ly Le
Xem chi tiết
Phạm Thị Phương Thảo
Xem chi tiết