mk ko chắc là đúng, bn coi sai chỗ nào thì nói mk nha
Bài 1:
a)Ta có: (x+5)(3x-y)=0
=> \(\left[\begin{array}{nghiempt}x+5=0\\3x-y=0\end{cases}< =>}\left[\begin{array}{nghiempt}x=-5\\x=-15\end{array}\right.\)
Vậy x=-5; y=-15
b)Ta có:(x-4)(y2-x)=0
=>\(\left[\begin{array}{nghiempt}x-4=0\\y^2-x=0\end{cases}< =>\left[\begin{array}{nghiempt}x=4\\y=\pm2\end{array}\right.}\)
Vậy x=4;y=\(\pm2\)
c)(x+y)2+(2y-x)2=0
Vì \(\left(x+y\right)^2\ge0;\left(2x-y\right)^2\ge0\)=>\(\left[\begin{array}{nghiempt}\left(x+y\right)^2=0\\\left(2x-y\right)^2=0\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x=-y\\2x=y\end{cases}< =>\left[\begin{array}{nghiempt}2x=-2y\\2x=y\end{array}\right.< =>x=y=0}\)
Bài 2:
a) Ta thấy :\(\frac{x+2}{x-3}>0< =>\left[\begin{array}{nghiempt}\hept{\begin{cases}x+2>0\\x-3>0\end{array}\right.\\\hept{\begin{cases}x+2< 0\\x-3< 0\end{array}\right.\end{array}\right.\)<=> \(\left[\begin{array}{nghiempt}\hept{\begin{cases}x>-2\\x>3\end{array}\right.\\\hept{\begin{cases}x< -2\\x< 3\end{array}\right.\end{cases}< =>\left[\begin{array}{nghiempt}x>3\\x< -2\end{array}\right.}\)Vậy x>3 hoặc x<-2 (x\(\in Q\))
b) Ta có: 4x2-x<0
<=> x(4x-1)<0
<=>\(\left[\begin{array}{nghiempt}\hept{\begin{cases}x< 0\\4x-1>0\end{array}\right.\\\hept{\begin{cases}x>0\\4x-1< 0\end{array}\right.\end{cases}< =>\left[\begin{array}{nghiempt}\hept{\begin{cases}x< 0\\x>\frac{1}{4}\end{cases}\left(loai\right)}\\\hept{\begin{cases}x>0\\x< \frac{1}{4}\end{array}\right.\end{cases}=>}0< x< \frac{1}{4}}\) Vậy 0<x<1/4( x thuộc Q)
Chỉ ghi lại những cái bị lỗi thôi cho rõ nhé
1) a)=> \(\left[\begin{array}{nghiempt}x+5=0\\3x-y=0\end{array}\right.\)<=> \(\left[\begin{array}{nghiempt}x=-5\\y=-15\end{array}\right.\)
b)\(\left[\begin{array}{nghiempt}x-4=0\\y^2-x=0\end{array}\right.\)<=> \(\left[\begin{array}{nghiempt}x=4\\y=\pm2\end{array}\right.\)
c)\(\left[\begin{array}{nghiempt}x=-y\\2x=y\end{array}\right.\)<=> x=y=0
2)a)
\(\frac{x+2}{x-3}>0\)
TH1:\(\begin{cases}x+2>0\\x-3>0\end{cases}\)<=> \(\begin{cases}x>-2\\x>3\end{cases}\)<=> x>3
TH2:\(\begin{cases}x+2< 0\\x-3< 0\end{cases}\)<=> \(\begin{cases}x< -2\\x< 3\end{cases}\)=> x<-2
Vậy x>3 hoặc x<-2(x thuộc Q)
b)4x2-x<0
<=>x(4x-1)<0
Th1 : \(\begin{cases}x< 0\\4x-1>0\end{cases}\)<=> \(\begin{cases}x< 0\\x>\frac{1}{4}\end{cases}\)(loại)
TH2: \(\begin{cases}x>0\\4x-1< 0\end{cases}\)<=> \(\begin{cases}x>0\\x< \frac{1}{4}\end{cases}\)
VẬy 0<x<1/4( x thuộc Q)

