1/ \(x^2+y^2\ge2xy\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{16}{2}=8\)
"="\(\Leftrightarrow x=y=2\)
2/ \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Có \(x+y\le\sqrt{2\left(x^2+y^2\right)}=\sqrt{2}\)
\(\Rightarrow\frac{4}{x+y}\ge\frac{4}{\sqrt{2}}=2\sqrt{2}\)
"="\(\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)