\(A=x^2+5y^2+6y-4xy+98\)
\(A=x^2-4xy+5y^2+6y+98\)
\(A=x^2-4xy+4y^2+y^2+6y+98\)
\(A=\left(x-2y\right)^2+y^2+6y+98\)
\(A=\left(x-2y\right)^2+y^2+6y+9+89\)
\(A=\left(x-2y\right)^2+\left(y+3\right)^2+89\ge89\)
Vậy \(A_{min}=89\). Dấu "=" xảy ra khi x = -6 ; y = -3.