a:
Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=-\dfrac{\left(-2\right)}{2\cdot1}=1\\y=-\dfrac{\left(-2\right)^2-4\cdot1\cdot3}{4\cdot1}=-\dfrac{4-12}{4}=2\end{matrix}\right.\)
=>Hàm số đồng biến khi x>1 và nghịch biến khi x<1
=>Trong khoảng (-1;1) thì khi x tăng thì y giảm và trong khoảng (1;2) thì khi x tăng thì y tăng
=>Khi x=1 thì f(x) min
=>\(y=1^2-2\cdot1+3=1-2+3=2\)
b: Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-\left(-2\right)}{2\cdot1}=1\\y=-\dfrac{\left(-2\right)^2-4\cdot1\cdot5}{4}=-\dfrac{4-20}{4}=-\dfrac{-16}{4}=4\end{matrix}\right.\)
=>Hàm số nghịch biến khi x<1 và đồng biến khi x>1
=>Trên khoảng [2;3] thì khi x tăng thì y tăng
Do đó: Khi x=2 thì y min và x=3 thì y max
Khi x=2 thì \(y=2^2-2\cdot2+5=5\)
Khi x=3 thì \(y=3^2-2\cdot3+5=9+5-6=8\)