@Nguyễn Nhật Minh
@Aki Tsuki
@Phùng Khánh Linh
@Nào Ai Biết
@Nguyễn Thanh Hằng
@Mysterious Person
giúp mk với
Bài 1:
\(A=-x^2-5x+3=\frac{37}{4}-(x^2+5x+\frac{25}{4})\)
\(=\frac{37}{4}-(x+\frac{5}{2})^2\)
Vì \((x+\frac{5}{2})^2\geq 0\Rightarrow A=\frac{37}{4}-(x+\frac{5}{2})^2\leq \frac{37}{4}-0=\frac{37}{4}\)
Vậy A(max)\(=\frac{37}{4}\Leftrightarrow x=\frac{-5}{2}\)
---------------
\(B=-2x^2-7x+9=\frac{121}{8}-2(x^2+\frac{7}{2}x+\frac{49}{16})\)
\(=\frac{121}{8}-2(x+\frac{7}{4})^2\)
Vì \((x+\frac{7}{4})^2\ge 0\Rightarrow B=\frac{121}{8}-2(x+\frac{7}{4})^2\leq \frac{121}{8}-2.0=\frac{121}{8}\)
Vậy B(max)\(=\frac{121}{8}\Leftrightarrow x=\frac{-7}{4}\)
Các câu còn lại bạn cũng làm tương tự.
Bài 1:
\(A=-x^2-5x+3=\frac{37}{4}-(x^2+5x+\frac{25}{4})\)
\(=\frac{37}{4}-(x+\frac{5}{2})^2\)
Vì \((x+\frac{5}{2})^2\geq 0\Rightarrow A=\frac{37}{4}-(x+\frac{5}{2})^2\leq \frac{37}{4}-0=\frac{37}{4}\)
Vậy A(max)\(=\frac{37}{4}\Leftrightarrow x=\frac{-5}{2}\)
---------------
\(B=-2x^2-7x+9=\frac{121}{8}-2(x^2+\frac{7}{2}x+\frac{49}{16})\)
\(=\frac{121}{8}-2(x+\frac{7}{4})^2\)
Vì \((x+\frac{7}{4})^2\ge 0\Rightarrow B=\frac{121}{8}-2(x+\frac{7}{4})^2\leq \frac{121}{8}-2.0=\frac{121}{8}\)
Vậy B(max)\(=\frac{121}{8}\Leftrightarrow x=\frac{-7}{4}\)
Các câu còn lại bạn cũng làm tương tự.
Bài 2:
\(A=x^2+5y^2+4xy+4x+10y+2010\)
\(=(x^2+4y^2+4xy)+y^2+4x+10y+2010\)
\(=(x+2y)^2+4(x+2y)+2^2+(y^2+2y+1)+2005\)
\(=(x+2y+2)^2+(y+1)^2+2005\)
\(\geq 0+0+2005=2005\)
Vậy \(A_{\min}=2005\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x+2y+2=0\\ y+1=0\end{matrix}\right.\Leftrightarrow x=0;y=-1\)
Bài 2:
\(A=x^2+5y^2+4xy+4x+10y+2010\)
\(=(x^2+4y^2+4xy)+y^2+4x+10y+2010\)
\(=(x+2y)^2+4(x+2y)+2^2+(y^2+2y+1)+2005\)
\(=(x+2y+2)^2+(y+1)^2+2005\)
\(\geq 0+0+2005=2005\)
Vậy \(A_{\min}=2005\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x+2y+2=0\\ y+1=0\end{matrix}\right.\Leftrightarrow x=0;y=-1\)
2b)
\(B=x^2+15y^2+4x-10y-6xy+30\)
\(=(x^2+9y^2-6xy)+6y^2+4x-10y+30\)
\(=(x-3y)^2+4(x-3y)+4+6y^2+2y+26\)
\(=(x-3y+2)^2+6(y^2+\frac{1}{3}y+\frac{1}{36})+\frac{155}{6}\)
\(=(x-3y+2)^2+6(y+\frac{1}{6})^2+\frac{155}{6}\)
\(\geq 0+6.0+\frac{155}{6}=\frac{155}{6}\)
Vậy \(B_{\min}=\frac{155}{6}\Leftrightarrow \left\{\begin{matrix} x-3y+2=0\\ y+\frac{1}{6}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{-5}{2}\\ y=\frac{-1}{6}\end{matrix}\right.\)
2b)
\(B=x^2+15y^2+4x-10y-6xy+30\)
\(=(x^2+9y^2-6xy)+6y^2+4x-10y+30\)
\(=(x-3y)^2+4(x-3y)+4+6y^2+2y+26\)
\(=(x-3y+2)^2+6(y^2+\frac{1}{3}y+\frac{1}{36})+\frac{155}{6}\)
\(=(x-3y+2)^2+6(y+\frac{1}{6})^2+\frac{155}{6}\)
\(\geq 0+6.0+\frac{155}{6}=\frac{155}{6}\)
Vậy \(B_{\min}=\frac{155}{6}\Leftrightarrow \left\{\begin{matrix} x-3y+2=0\\ y+\frac{1}{6}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{-5}{2}\\ y=\frac{-1}{6}\end{matrix}\right.\)