1 tập nghiệm bất phương trình e^2x+e^x-6<0 là
A (-3;2) B\(\left(-\infty;2\right)\) C\(\left(-\infty;ln2\right)\) D \(\left(ln2;+\infty\right)\)
2 Trong không gian, cho tam giác ABC vuông tại AC=3a và BC=5a. Khi quay quanh tam giác ABC quanh cạnh góc vuông AB thì đường gấp khúc ACB tạo thành một hình nón. Diện tích xung quanh hình nón đó là
3 cho \(\int_1^3\) f(x)dx=4. Tính I = \(\int_1^0\frac{f\left(\sqrt{x}\right)}{\sqrt{x}}dx\)
A.4 B.8 C.2 D.6
4 cho hai số phức \(z_1\) =2+i và \(z_2\) =-3+i . Phần ảo của số phức w= \(z_1z_2+2i\) là
A.-1 B.3 C.1 D.7
5 gọi z1,z2 là hai nghiệm phức của pt \(z^2+4z+5=0\) trong đó z2 là nghiệm phức có phẩn ảo dương. Mô đun của số phúc w=\(z_1-2z_2\) là
6 rong ko gian với hệ tọa độ oxyz. cho hai điểm A(0;1;1) ,B(1;3;2). Viết phương trình của mặt phẳng(P) đi qua A và vuông góc với đường thẳng AB
A :x+2y+z-9=0 B x+4y+3z-7=0 C x+2y+z-3=0 D y+z-2=0
7 Có 9 chiếc ghế dc kê thanh một hàng ngang. xếp ngẫu nhiên 9 học sinh trong đó có 3 hs nam và 6 hs nữ ngồi vào hàng ghế đó, sao cho mỗi ghế có đúng một hs,.Xác suất để các học sinh nam nào ngồi cạnh nhau là
8 Cho a>0,b>0 thỏa mãn \(a^2+9b^2=10ab\) .Khẳng định nào sau đây đúng
A log(a+1)+logb=1 B \(log\frac{a+3b}{4}=\frac{loga+logb}{2}\) C 3log(a+3b)=log a-log b D 2log(a+3b)=2log a+log b
9 trong ko gian oxyz điểm M (3;0;-2) nằm trên mp nào sau đây
A(oxy) B(oyz) C x=0 D(oxz)
1.
\(e^x=t>0\Rightarrow t^2+t-6< 0\)
\(\Rightarrow-3< t< 2\Rightarrow t< 2\)
\(\Rightarrow e^x< 2\Rightarrow x< ln2\)
2.
Chà tam giác này vuông ở đâu ta? Thiếu chữ quan trọng nhất
3.
Chắc bạn ghi nhầm đề rồi đó, tại 0 hàm \(\frac{f\left(\sqrt{x}\right)}{\sqrt{x}}\) ko xác định nên ko tính được tích phân này.
Chắc ghi sai cận con tích phân I
4.
\(w=z_1z_2+2i=\left(2+i\right)\left(-3+i\right)+2i=-7+i\)
\(\Rightarrow\) Phần ảo bằng 1
5.
\(z^2+4z+5=0\Leftrightarrow\left(z+2\right)^2=-1=i^2\)
\(\Rightarrow\left[{}\begin{matrix}z+2=i\\z+2=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}z_2=-2+i\\z_1=-2-i\end{matrix}\right.\)
\(\Rightarrow w=z_1-2z_2=2-3i\)
\(\Rightarrow\left|w\right|=\sqrt{2^2+\left(-3\right)^2}=\sqrt{13}\)
6.
\(\overrightarrow{AB}=\left(1;2;1\right)\Rightarrow\) mặt phẳng (P) nhận (1;2;1) là 1 vtpt
Pt (P): \(1\left(x-0\right)+2\left(y-1\right)+1\left(z-1\right)=0\)
\(\Leftrightarrow x+2y+z-3=0\)
7.
Đề chắc ghi sai, có phải đề đúng là xác suất để ko có học sinh nam nào ngồi cạnh nhau?
Xếp bất kì: có \(9!\) cách
Xếp 6 bạn nữ có \(6!\) cách, 6 bạn nữ này tạo ra 7 vị trí trống, xếp 3 bạn nam vào các vị trí trống đó có \(A_7^3\) cách
Xác suất: \(P=\frac{6!.A_7^3}{9!}=\frac{5}{12}\)
8.
\(a^2+9b^2=10ab\Leftrightarrow a^2+6ab+9b^2=16ab\)
\(\Leftrightarrow\left(a+3b\right)^2=16ab\)
\(\Rightarrow log\left(a+3b\right)^2=log\left(16ab\right)\)
\(\Rightarrow2log\left(a+3b\right)=log16+loga+logb\)
\(\Leftrightarrow log\left(a+3b\right)-\frac{log4^2}{2}=\frac{loga+logb}{2}\)
\(\Leftrightarrow log\left(a+3b\right)-log4=\frac{loga+logb}{2}\)
\(\Leftrightarrow log\frac{a+3b}{4}=\frac{loga+logb}{2}\)
9.
Tung độ của điểm M bằng 0 nên nó nằm trên mặt phẳng Oxz