1.
a) \(A=\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)
\(A=\left(x^3-3x^2+3x-1\right)-\left(x^3+64\right)+\left(3x^2-3x\right)\)
\(A=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)
\(A=\left(x^3-x^3\right)+\left(-3x^2+3x\right)+\left(3x-3x\right)+\left(-1-64\right)\)
\(A=-65\)
Vậy giá trị của biểu thức trên không phụ thuộc vào biến.
b) \(B=\left(x+y-1\right)^3-\left(x+y+1\right)^3+6\left(x+y\right)^2\)
\(B=\left[\left(x+y-1\right)-\left(x+y+1\right)\right].\left[\left(x+y-1\right)^2+\left(x+y-1\right).\left(x+y+1\right)+\left(x+y+1\right)^2\right]+6\left(x+y\right)^2\)
\(B=\left(x+y-1-x-y-1\right).\left[\left(x+y\right)^2-2\left(x+y\right).1+1+\left(x+y\right)^2-1+\left(x+y\right)^2+2\left(x+y\right).1+1\right]+6\left(x+y\right)^2\)
\(B=-2.\left(x^2+2xy+y^2-2x-2y+1+x^2+2xy+y^2-1+x^2+2xy+y^2+2x+2y+1\right)+6\left(x+y\right)^2\)
\(B=-2.\left(3x^2+6xy+3y^2+1\right)+6\left(x+y\right)^2\)
\(B=-2.\left(3x^2+6xy+3y^2\right)-2+6\left(x+y\right)^2\)
\(B=-6\left(x+y\right)^2+6\left(x+y\right)^2-2\)
\(B=-6\left[\left(x+y\right)^2-\left(x+y\right)^2\right]-2\)
\(B=-2\)
Vậy giá trị của biểu thức trên không phụ thuộc vào biến.
2. \(A=x^2+6x+11\)
\(A=x^2+2x.3+3^2+2\)
\(A=\left(x+3\right)^2+2\)
Ta có: \(\left(x+3\right)^2\ge0\)
\(\Rightarrow\left(x+3\right)^2+2\ge2\)
\(\Rightarrow Min_A=2\Leftrightarrow x=-3\)
\(B=4-x^2-x\)
\(B=-x^2-x+4\)
\(B=-x^2-x-\dfrac{1}{4}+\dfrac{17}{4}\)
\(B=-\left(x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{17}{4}\)
\(B=-\left(x+\dfrac{1}{2}\right)^2+\dfrac{17}{4}\)
Ta có: \(-\left(x+\dfrac{1}{2}\right)^2\le0\)
\(\Rightarrow-\left(x+\dfrac{1}{2}\right)^2+\dfrac{17}{4}\le\dfrac{17}{4}\)
\(\Rightarrow Max_B=\dfrac{17}{4}\Leftrightarrow x=-\dfrac{1}{2}\)